浙江省嘉兴市秀洲区、经开区七校2024届八年级数学第二学期期末复习检测模拟试题含解析_第1页
浙江省嘉兴市秀洲区、经开区七校2024届八年级数学第二学期期末复习检测模拟试题含解析_第2页
浙江省嘉兴市秀洲区、经开区七校2024届八年级数学第二学期期末复习检测模拟试题含解析_第3页
浙江省嘉兴市秀洲区、经开区七校2024届八年级数学第二学期期末复习检测模拟试题含解析_第4页
浙江省嘉兴市秀洲区、经开区七校2024届八年级数学第二学期期末复习检测模拟试题含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

浙江省嘉兴市秀洲区、经开区七校2024届八年级数学第二学期期末复习检测模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每小题3分,共30分)1.如图,菱形ABCD的对角线AC,BD相交于点O,E,F分别是AB,BC边上的中点,连接EF.若,BD=4,则菱形ABCD的周长为()A.4 B. C. D.282.△ABC中,AB=13,AC=15,高AD=12,则BC的长为()A.14 B.4 C.14或4 D.以上都不对3.下列函数中,表示y是x的正比例函数的是().A. B. C. D.4.如图,平行四边形ABCD中,AC⊥AB,点E为BC边中点,AD=6,则AE的长为()A.2 B.3 C.4 D.55.的算术平方根是()A. B. C. D.6.如图,在直角坐标系中,点A、B的坐标分别为(1,4)和(3,0),点C是y轴上的一个动点,且A、B、C三点不在同一条直线上,当△ABC的周长最小时,点C的坐标是A.(0,0) B.(0,1) C.(0,2) D.(0,3)7.平行四边形具有的特征是()A.四个角都是直角 B.对角线相等C.对角线互相平分 D.四边相等8.菱形的两条对角线长为6cm和8cm,那么这个菱形的周长为A.40cm B.20cm C.10cm D.5cm9.抛物线y=(x﹣2)2+3的顶点坐标是()A.(2,3) B.(﹣2,3) C.(2,﹣3) D.(﹣2,﹣3)10.某专卖店专营某品牌的衬衫,店主对上一周中不同尺码的衬衫销售情况统计如表:尺码3940414243平均每天销售数量(件)1012201212该店主决定本周进货时,增加了一些

尺码的衬衫,影响该店主决策的统计量是()A.众数 B.方差 C.平均数 D.中位数二、填空题(每小题3分,共24分)11.不等式的正整数解有________个.12.“a的3倍与b的差不超过5”用不等式表示为__________.13.若关于x的方程-3有增根,则a=_____.14.在平面直角坐标系xOy中,有一个等腰直角三角形AOB,∠OAB=90°,直角边AO在x轴上,且AO=1.将Rt△AOB绕原点O顺时针旋转90°得到等腰直角三角形A1OB1,且A1O=2AO,再将Rt△A1OB1绕原点O顺时针旋转90°得到等腰三角形A2OB2,且A2O=2A1O…,依此规律,得到等腰直角三角形A2OB2.则点B2的坐标_______15.函数,当时,_____;当1<<2时,随的增大而_____(填写“增大”或“减小”).16.若一元二次方程有两个不相同的实数根,则实数的取值范围________.17.如图,将周长为8的△ABC沿BC方向向右平移1个单位得到△DEF,则四边形ABFD的周长为.18.如图,一次函数y=kx+b的图象与x轴的交点坐标为(1,0),则下列说法:①y随x的增大而减小;②b>0;③关于x的方程kx+b=0的解为x=1;④不等式kx+b>0的解集是x>1.其中说法正确的有_________(把你认为说法正确的序号都填上).三、解答题(共66分)19.(10分)已知三角形纸片ABC,其中∠C=90°,AB=10,BC=6,点E,F分别是AC,AB上的点,连接EF.(1)如图1,若将纸片ABC沿EF折叠,折叠后点A刚好落在AB边上点D处,且S△ADE=S四边形BCED,求ED的长;(2)如图2,若将纸片ABC沿EF折叠,折叠后点A刚好落在BC边上点M处,且EM∥AB.①试判断四边形AEMF的形状,并说明理由;②求折痕EF的长.20.(6分)如图,在平行四边形ABCD中,点F在AD上,且AF=AB,AE平分∠BAD交BC于点E,连接EF,BF,与AE交于点O.(1)求证:四边形ABEF是菱形;(2)若四边形ABEF的周长为40,BF=10,求AE的长及四边形ABEF的面积.21.(6分)树叶有关的问题如图,一片树叶的长是指沿叶脉方向量出的最长部分的长度(不含叶柄),树叶的宽是指沿与主叶脉垂直方向量出的最宽处的长度,树叶的长宽比是指树叶的长与树叶的宽的比值。某同学在校园内随机收集了A树、B树、C树三棵的树叶各10片,通过测量得到这些树叶的长y(单位:cm),宽x(单位:cm)的数据,计算长宽比,理如下:表1A树、B树、C树树叶的长宽比统计表12345678910A树树叶的长宽比4.04.95.24.15.78.57.96.37.77.9B树树叶的长宽比2.52.42.22.32.01.92.32.01.92.0C树树叶的长宽比1.11.21.20.91.01.01.10.91.01.3表1A树、B树、C树树叶的长宽比的平均数、中位数、众数、方差统计表平均数中位数众数方差A树树叶的长宽比6.26.07.92.5B树树叶的长宽比2.20.38C树树叶的长宽比1.11.11.00.02A树、B树、C树树叶的长随变化的情况解决下列问题:(1)将表2补充完整;(2)①小张同学说:“根据以上信息,我能判断C树树叶的长、宽近似相等。”②小李同学说:“从树叶的长宽比的平均数来看,我认为,下图的树叶是B树的树叶。”请你判断上面两位同学的说法中,谁的说法是合理的,谁的说法是不合理的,并给出你的理由;(3)现有一片长103cm,宽52cm的树叶,请将该树叶的数用“★”表示在图1中,判断这片树叶更可能来自于A、B、C中的哪棵树?并给出你的理由。22.(8分)如图,在平面直角坐标系中,△OAB的顶点坐标分别为O(0,0),A(2,4),B(4,0),分别将点A、B的横坐标、纵坐标都乘以1.5,得相应的点A'、B'的坐标。(1)画出OA'B':(2)△OA'B'与△AOB______位似图形:(填“是”或“不是”)(3)若线段AB上有一点,按上述变换后对应的A'B'上点的坐标是______.23.(8分)如图,直线l1:y=2x+1与直线l2:y=mx+4相交于点P(1,b)(1)求b,m的值(2)垂直于x轴的直线x=a与直线l1,l2分别相交于C,D,若线段CD长为2,求a的值24.(8分)如图,在坐标系中,△ABC中A(-2,-1)、B(-3,-4)、C(0,-3).(1)请画出△ABC关于坐标原点O的中心对称图形△A′B′C′,并写出点A的对应点A′的坐标;(2)请直接写出:以A、B、C为顶点的平行四边形的第四个顶点D的所有可能的坐标.25.(10分)解不等式组:,并把它的解集在数轴上表示出来.26.(10分)已知a、b、c满足(a﹣3)2|c﹣5|=1.求:(1)a、b、c的值;(2)试问以a、b、c为边能否构成三角形?若能构成三角形,求出三角形的周长;若不能构成三角形,请说明理由.

参考答案一、选择题(每小题3分,共30分)1、C【解析】

首先利用三角形的中位线定理得出AC,进一步利用菱形的性质和勾股定理求得边长,得出周长即可.【详解】解:∵E,F分别是AB,BC边上的中点,EF=,∴AC=2EF=2,∵四边形ABCD是菱形,∴AC⊥BD,OA=AC=,OB=BD=2,∴AB==,∴菱形ABCD的周长为4.故选C.2、C【解析】

分两种情况:△ABC是锐角三角形和△ABC是钝角三角形,都需要先求出BD,CD的长度,在锐角三角形中,利用求解;在钝角三角形中,利用求解.【详解】(1)若△ABC是锐角三角形,在中,∵由勾股定理得在中,∵由勾股定理得∴(2)若△ABC是钝角三角形,在中,∵由勾股定理得在中,∵由勾股定理得∴综上所述,BC的长为14或4故选:C.【点睛】本题主要考查勾股定理,掌握勾股定理并分情况讨论是解题的关键.3、B【解析】

根据正比例函数的定义来判断:一般地,两个变量x,y之间的关系式可以表示成形如y=kx(k为常数,且k≠0)的函数,那么y就叫做x的正比例函数.【详解】A、该函数不符合正比例函数的形式,故本选项错误.B、该函数是y关于x的正比例函数,故本选项正确.C、该函数是y关于x的一次函数,故本选项错误.D、该函数是y2关于x的函数,故本选项错误.故选B.【点睛】主要考查正比例函数的定义:一般地,两个变量x,y之间的关系式可以表示成形如y=kx(k为常数,且k≠0)的函数,那么y就叫做x的正比例函数.4、B【解析】由平行四边形得AD=BC,在Rt△BAC中,点E为BC边中点,根据直角三角形的中线等于斜边的一半即可求出AE.解:∵四边形ABCD是平行四边形,∴AD=BC=6,∵AC⊥AB,∴△BAC为Rt△BAC,∵点E为BC边中点,∴AE=BC=.故选B.5、B【解析】

根据算术平方根的概念求解即可.【详解】解:4的算术平方根是2,故选B.【点睛】本题考查了算术平方根的概念,属于基础题型,熟练掌握算术平方根的定义是解题的关键.6、D【解析】

解:作B点关于y轴对称点B′点,连接AB′,交y轴于点C′,

此时△ABC的周长最小,

∵点A、B的坐标分别为(1,4)和(3,0),

∴B′点坐标为:(-3,0),则OB′=3过点A作AE垂直x轴,则AE=4,OE=1

则B′E=4,即B′E=AE,∴∠EB′A=∠B′AE,

∵C′O∥AE,

∴∠B′C′O=∠B′AE,∴∠B′C′O=∠EB′A∴B′O=C′O=3,

∴点C′的坐标是(0,3),此时△ABC的周长最小.

故选D.7、C【解析】

根据平行四边形的性质进行选择.【详解】平行四边形对角线互相平分,对边平行且相等,对角相等.故选C【点睛】本题考核知识点:平行四边形性质.解题关键点:熟记平行四边形性质.8、B【解析】∵菱形的两条对角线长为6cm和8cm,∴AO=4cm,BO=3cm.,∴这个菱形的周长为5×4=20cm.故选B.9、A【解析】

根据抛物线的顶点式可直接得到顶点坐标.【详解】解:y=(x﹣2)2+3是抛物线的顶点式方程,根据顶点式的坐标特点可知,顶点坐标为(2,3).故选:A.【点睛】本题考查了二次函数的顶点式与顶点坐标,顶点式y=(x-h)2+k,顶点坐标为(h,k),对称轴为直线x=h,难度不大.10、A【解析】

平均数、中位数、众数是描述一组数据集中程度的统计量;方差、标准差是描述一组数据离散程度的统计量.销量大的尺码就是这组数据的众数.【详解】解:由于众数是数据中出现次数最多的数,故影响该店主决策的统计量是众数.故选:A.【点睛】本题主要考查统计的有关知识,主要包括平均数、中位数、众数、方差的意义.掌握以上知识是解题的关键.二、填空题(每小题3分,共24分)11、4【解析】

首先利用不等式的基本性质解不等式,再从不等式的解集中找出适合条件的正整数即可.【详解】解:解得:不等式的解集是,故不等式的正整数解为1,2,3,4,共4个.故答案为:4.【点睛】本题考查了一元一次不等式的整数解,正确解不等式,求出解集是解答本题的关键.解不等式应根据不等式的基本性质.12、【解析】

根据“a的3倍与b的差不超过5”,则.【详解】解:根据题意可得出:;故答案为:【点睛】此题主要考查了由实际问题抽象出一元一次不等式,注意不大于即为小于等于.13、1【解析】

去分母后把x=2代入,即可求出a的值.【详解】两边都乘以x-2,得a=x-1,∵方程有增根,∴x-2=0,∴x=2,∴a=2-1=1.故答案为:1.【点睛】本题考查的是分式方程的增根,在分式方程变形的过程中,产生的不适合原方程的根叫做分式方程的增根.增根使最简公分母等于0,不适合原分式方程,但是适合去分母后的整式方程.14、()【解析】

根据题意得出B点坐标变化规律,进而得出点B2018的坐标位置,进而得出答案.【详解】解:∵△AOB是等腰直角三角形,OA=1,∴AB=OA=1,∴B(1,1),将Rt△AOB绕原点O顺时针旋转90°得到等腰直角三角形A1OB1,且A1O=2AO,再将Rt△A1OB1绕原点O顺时针旋转90°得到等腰三角形A2OB2,且A2O=2A1O…,依此规律,∴每4次循环一周,B1(2,-2),B2(-4,-4),B3(-8,8),B4(16,16),∵2÷4=503…1,∴点B2与B1同在一个象限内,∵-4=-22,8=23,16=24,∴点B2(22,-22).故答案为:(22,-22).【点睛】此题主要考查了点的坐标变化规律,得出B点坐标变化规律是解题关键.15、;增大.【解析】

将y=4代入,求得x的值即可,根据函数所在象限得,当1<x<2时,y随x的增大而增大.【详解】把y=4代入,得,解得x=,当k=-6时,的图象在第二、四象限,∴当1<x<2时,y随x的增大而增大;故答案为,增大.【点睛】本题考查了反比例函数的性质,重点掌握函数的增减性问题,解此题的关键是利用数形结合的思想.16、且【解析】

利用一元二次方程的定义和判别式的意义得到m≠1且△=(-2)2-4m>1,然后求出两不等式的公共部分即可.【详解】解:根据题意得m≠1且△=(-2)2-4m>1,

解得m<1且m≠1.故答案为:m<1且m≠1.【点睛】本题考查了根的判别式:一元二次方程ax2+bx+c=1(a≠1)的根与△=b2-4ac有如下关系:当△>1时,方程有两个不相等的两个实数根;当△=1时,方程有两个相等的两个实数根;当△<1时,方程无实数根.17、1.【解析】试题解析:根据题意,将周长为8的△ABC沿边BC向右平移1个单位得到△DEF,则AD=1,BF=BC+CF=BC+1,DF=AC,又∵AB+BC+AC=1,∴四边形ABFD的周长=AD+AB+BF+DF=1+AB+BC+1+AC=1.考点:平移的性质.18、①②③【解析】①因为一次函数的图象经过二、四象限,所以y随x的增大而减小,故本项正确;②因为一次函数的图象与y轴的交点在正半轴上,所以b>0,故本项正确;③因为一次函数的图象与x轴的交点为(1,0),所以当y=0时,x=1,即关于x的方程kx+b=0的解为x=1,故本项正确;④由图象可得不等式kx+b>0的解集是x<1,故本项是错误的.故正确的有①②③.三、解答题(共66分)19、(1)DE=1;(2)①四边形AEMF是菱形,证明见解析;②【解析】

(1)先利用折叠的性质得到EF⊥AB,△AEF≌△DEF,则S△AEF=S△DEF,则易得S△ABC=1S△AEF,再证明Rt△AEF∽Rt△ABC,然后根据相似三角形的性质得到两个三角形面积比和AB,AE的关系,再利用勾股定理求出AB即可得到AE的长;(2)①根据四边相等的四边形是菱形证明即可;②设AE=x,则EM=x,CE=8−x,先证明△CME∽△CBA得到关于x的比例式,解出x后计算出CM的值,再利用勾股定理计算出AM,然后根据菱形的面积公式计算EF.【详解】(1)∵△ACB的一角沿EF折叠,折叠后点A落在AB边上的点D处,∴EF⊥AB,△AEF≌△DEF,∴S△AEF=S△DEF,∵S△ADE=S四边形BCDE,∴S△ABC=4S△AEF,在Rt△ABC中,∵∠ACB=90,AB=10,BC=6,∴AC=8,∵∠EAF=∠BAC,∴Rt△AEF∽Rt△ABC,∴,即,∴AE=1(负值舍去),由折叠知,DE=AE=1.(2)①如图2中,∵△ACB的一角沿EF折叠,折叠后点A落在BC边上的点M处,∴AE=EM,AF=MF,∠AFE=∠MFE,∵ME∥AB,∴∠AFE=∠FEM∴∠MFE=∠FEM,∴ME=MF,∴AE=EM=MF=AF,∴四边形AEMF为菱形.②设AE=x,则EM=x,CE=8−x,∵四边形AEMF为菱形,∴EM∥AB,∴△CME∽△CBA,∴,即,解得x=,CM=,在Rt△ACM中,AM=,∵S菱形AEMF=EF•AM=AE•CM,∴EF=2×.【点睛】本题考查了相似形的综合题:熟练掌握折叠的性质和菱形的判定与性质;灵活构建相似三角形,运用勾股定理或相似比表示线段之间的关系和计算线段的长.解决此类题目时要各个击破.本题有一定难度,证明三角形相似和运用勾股定理得出方程是解决问题的关键,属于中考常考题型.20、(1)见解析;(2)AE=10,四边形ABEF的面积=50.【解析】

(1)由平行四边形的性质和角平分线得出∠BAE=∠AEB,证出BE=AB,由AF=AB得出BE=AF,即可得出结论.(2)根据菱形的性质可得AB=10,AE⊥BF,BO=FB=5,AE=2AO,利用勾股定理计算出AO的长,进而可得AE的长.菱形的面积=对角线乘积的一半.【详解】(1)证明∵四边形ABCD是平行四边形,∴AD∥BC,∴∠DAE=∠AEB,∵AE平分∠BAD,∴∠BAE=∠DAE,∴∠BAE=∠AEB,∴BE=AB,且AF=AB,∴BE=AF,又∵BE∥AF,∴四边形ABEF是平行四边形,∵AF=AB,∴四边形ABEF是菱形;(2)∵四边形ABEF为菱形,且周长为40,BF=10∴AB=BE=EF=AF=10,AE⊥BF,BO=FB=5,AE=2AO,在Rt△AOB中,AO=,∴AE=2AO=10.∴四边形ABEF的面积=BF•AE=×10×10=50【点睛】本题主要考查了菱形的性质和判定,关键是掌握一组邻边相等的平行四边形是菱形,菱形对角线互相垂直且平分.21、(1)2.1,2.0;(2)小张同学的说法是合理的,小李学同的说法是不合理;(3)B树;【解析】

(1)根据中位数和众数的定义,由表中的数据求出B树树叶的长宽比的中位数和众数即可;(2)根据表中数据,求出C树树叶的长宽比的近似值,从而判断小张的说法,根据所给树叶的长宽比,判断小李的说法即可;(3)根据树叶的长和宽在图中用★标出该树叶,根据树叶的长宽比判断该树叶来自哪棵树即可.【详解】解(1)将这10片B树树叶的长宽比从小到大排列为:1.9,1.9,2.0,2.0,2.0,2.2,2.3,2.3,2.4,2.5,处在中间位置的两个数为2.0,2.2,∴中位数为(2.0+2.2)÷2=2.1;∵2.0出现了3次,出现的次数最多,∴众数为2.0.平均数中位数众数方差A树树叶的长宽比B树树叶的长宽比2.12.0C树树叶的长宽比(2)小张同学的说法是合理的,小李同学的说法是不合理的.理由如下:由表中的数据可知C树叶的长宽比近似于1,故小张的说法正确;由树叶的长度和宽度可知该树叶的长宽比近似于6,所以该树叶是A树的树叶,故小李的说法错误;(3)图1中,★表示这片树叶的数据,这片树叶来自B树;这块树叶的长宽比为103:52≈2,所以这片树叶来自B树.【点睛】本题主要考查了统计表的应用,平均数,中位数,众数,方差,用样本估计总体,熟练掌握中位数和众数的定义是解决此题的关键.22、(1)见解析;(2)是;(3).【解析】

(1)直接利用将点A、B的横坐标、纵坐标都乘以1.5,得相应的点A'、B'的坐标,即可得出答案;(2)利用位似图形的定义得出答案;(3)利用位似图形的性质即可得出对应点坐标.【详解】解:(1)根据题意可知A'坐标为(21.5,41.5),即A'(3,6),同理B'(6,0),如图所示:△OA'B',即为所求;(2)如(1)中图形所示,OA和OA'、OB和OB'在同一直线上,AB平行于A'B',所以△OA'B'与△AOB是位似图形;故答案为:是;(3)若线段AB上有一点D(x0,y0),按上述变换后对应的A'B'上点的坐标是:(1.5x0,1.5y0),故答案为:(1.5x0

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论