![浙江省绍兴市诸暨市2024届高一数学第一学期期末考试模拟试题含解析_第1页](http://file4.renrendoc.com/view11/M01/31/2D/wKhkGWWoocmAKLHHAAGysvIbFKY436.jpg)
![浙江省绍兴市诸暨市2024届高一数学第一学期期末考试模拟试题含解析_第2页](http://file4.renrendoc.com/view11/M01/31/2D/wKhkGWWoocmAKLHHAAGysvIbFKY4362.jpg)
![浙江省绍兴市诸暨市2024届高一数学第一学期期末考试模拟试题含解析_第3页](http://file4.renrendoc.com/view11/M01/31/2D/wKhkGWWoocmAKLHHAAGysvIbFKY4363.jpg)
![浙江省绍兴市诸暨市2024届高一数学第一学期期末考试模拟试题含解析_第4页](http://file4.renrendoc.com/view11/M01/31/2D/wKhkGWWoocmAKLHHAAGysvIbFKY4364.jpg)
![浙江省绍兴市诸暨市2024届高一数学第一学期期末考试模拟试题含解析_第5页](http://file4.renrendoc.com/view11/M01/31/2D/wKhkGWWoocmAKLHHAAGysvIbFKY4365.jpg)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
浙江省绍兴市诸暨市2024届高一数学第一学期期末考试模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(本大题共10小题;在每小题给出的四个选项中,只有一个选项符合题意,请将正确选项填涂在答题卡上.)1.已知函数,对于任意,且,均存在唯一实数,使得,且,若关于的方程有4个不相等的实数根,则的取值范围是A. B.C. D.2.是边AB上的中点,记,,则向量A. B.C. D.3.若函数恰有个零点,则的取值范围是()A. B.C. D.4.如图,在三棱锥中,,分别为AB,AD的中点,过EF的平面截三棱锥得到的截面为EFHG.则下列结论中不一定成立的是()A. B.C.平面 D.平面5.已知函数在上是增函数,则的取值范围是()A., B.,C., D.,6.下列函数,在其定义域内既是奇函数又是增函数的是A. B.C. D.7.古希腊数学家阿波罗尼奥斯(约公元前262~公元前190年)的著作《圆锥曲线论》是古代世界光辉的科学成果,著作中有这样一个命题:平面内与两定点距离的比为常数(且)的点的轨迹是圆,后人将这个圆称为阿波罗尼斯圆.已知,动点满足,则动点轨迹与圆位置关系是()A.外离 B.外切C.相交 D.内切8.函数的图象的横坐标和纵坐标同时扩大为原来的3倍,再将图象向右平移3个单位长度,所得图象的函数解析式为A. B.C. D.9.函数与的图象在上的交点有()A.个 B.个C.个 D.个10.已知函数的部分图象如图所示,下列结论正确的个数是()①②将的图象向右平移1个单位,得到函数的图象③的图象关于直线对称④若,则A.0个 B.1个C.2个 D.3个二、填空题(本大题共5小题,请把答案填在答题卡中相应题中横线上)11.已知向量,写出一个与共线的非零向量的坐标__________.12.设函数,若其定义域内不存在实数,使得,则的取值范围是______13.已知,,则___________(用a、b表示).14.若函数在区间上单调递减,则实数的取值范围是__________15.在平行四边形中,为上的中点,若与对角线相交于,且,则__________三、解答题(本大题共6小题.解答应写出文字说明,证明过程或演算步骤.)16.设为实数,函数.(1)若,求的取值范围;(2)讨论的单调性;(3)是否存在满足:在上值域为.若存在,求的取值范围.17.已知函数.(1)解关于不等式;(2)若对于任意,恒成立,求的取值范围.18.已知函数.(1)求的定义域;(2)若角在第一象限且,求的值.19.已知函数(I)若是第一象限角,且.求的值;(II)求使成立的x的取值集合20.对于定义在上的函数,如果存在实数,使得,那么称是函数的一个不动点.已知(1)当时,求的不动点;(2)若函数有两个不动点,,且①求实数的取值范围;②设,求证在上至少有两个不动点21.设是定义在上的奇函数,当时,.(1)求的解析式;(2)解不等式.
参考答案一、选择题(本大题共10小题;在每小题给出的四个选项中,只有一个选项符合题意,请将正确选项填涂在答题卡上.)1、A【解析】解:由题意可知f(x)在[0,+∞)上单调递增,值域为[m,+∞),∵对于任意s∈R,且s≠0,均存在唯一实数t,使得f(s)=f(t),且s≠t,∴f(x)在(﹣∞,0)上是减函数,值域为(m,+∞),∴a<0,且﹣b+1=m,即b=1﹣m∵|f(x)|=f()有4个不相等的实数根,∴0<f()<﹣m,又m<﹣1,∴0m,即0<(1)m<﹣m,∴﹣4<a<﹣2,∴则a的取值范围是(﹣4,﹣2),故选A点睛:本题中涉及根据函数零点求参数取值,是高考经常涉及的重点问题,(1)利用零点存在的判定定理构建不等式求解;(2)分离参数后转化为函数的值域(最值)问题求解,如果涉及由几个零点时,还需考虑函数的图象与参数的交点个数;(3)转化为两熟悉的函数图象的上、下关系问题,从而构建不等式求解.2、C【解析】由题意得,∴.选C3、D【解析】由分段函数可知必须每段有且只有1个零点,写出零点建立不等式组即可求解.【详解】因为时至多有一个零点,单调函数至多一个零点,而函数恰有个零点,所以需满足有1个零点,有1个零点,所以,解得,故选:D4、D【解析】利用线面平行的判定和性质对选项进行排除得解.【详解】对于,,分别为,的中点,,EF与平面BCD平行过的平面截三棱锥得到的截面为,平面平面,,,故AB正确;对于,,平面,平面,平面,故正确;对于,的位置不确定,与平面有可能相交,故错误.故选:D.【点睛】熟练运用线面平行的判定和性质是解题的关键.5、D【解析】先根据题意建立不等式组,再求解出,最后给出选项即可.【详解】解:因为函数在上是增函数,所以,解得,则故选:D.【点睛】本题考查利用分段函数的单调性求参数范围,是基础题6、A【解析】由幂函数,指数函数与对数函数的性质可得【详解】解:根据题意,依次分析选项:对于A,,其定义域为R,在R上既是奇函数又是增函数,符合题意;对于B,,是对数函数,不是奇函数,不符合题意;对于C,,为指数函数,不为奇函数;对于D,,为反比例函数,其定义域为,在其定义域上不是增函数,不符合题意;故选A【点睛】本题考查函数的奇偶性与单调性,是基础题,掌握幂函数,指数函数与对数函数的性质是解题关键7、C【解析】设动点P的坐标,利用已知条件列出方程,化简可得点P的轨迹方程为圆,再判断圆心距和半径的关系即可得解.,详解】设,由,得,整理得,表示圆心为,半径为的圆,圆的圆心为为圆心,为半径的圆两圆的圆心距为,满足,所以两个圆相交.故选:C.8、D【解析】函数的图像的横坐标和纵坐标同时扩大为原来的3倍,所得图像的解析式为,再向右平移3个单位长度,所得图像的解析式为,选D.9、B【解析】在上解出方程,得出方程解的个数即可.详解】当时,解方程,得,整理得,得或.解方程,解得、、、或.解方程,解得、、.因此,方程在上的解有个.故选B.【点睛】本题考查正切函数与正弦函数图象的交点个数,可以利用图形法解决,也转化为方程根的个数来处理,考查计算能力,属于中等题.10、C【解析】由函数的图象的顶点坐标求出A,由周期求出,可判断①,由点的坐标代入求得,可得函数的解析式,再根据函数图象的变换规律可判断②,将代入解析式中验证,可判断③;根据三角函数的图象和性质可判断④,即可得到答案【详解】由函数图象可知:,函数的最小正周期为,故,将代入解析式中:,得:由于,故,故①错误;由以上分析可知,将的图象向右平移1个单位,得到函数的图象,故②正确;将代入得,故③错误;由于函数的最小正周期为8,而,故不会出现一个取到最大或最小值另一个取到最小或最大的情况,故,故④正确,故选:C二、填空题(本大题共5小题,请把答案填在答题卡中相应题中横线上)11、(纵坐标为横坐标2倍即可,答案不唯一)【解析】向量与共线的非零向量的坐标纵坐标为横坐标2倍,例如(2,4)故答案为12、【解析】按的取值范围分类讨论.【详解】当时,定义域,,满足要求;当时,定义域,取,,时,,不满足要求;当时,定义域,,,满足要求;当时,定义域,取,,时,,不满足要求;综上:故答案为:【点睛】关键点睛:由参数变化引起的分类讨论,可根据题设按参数在不同区间,对应函数的变化,找到参数的取值范围.13、##【解析】根据对数的运算性质可得,再由指对数关系有,,即可得答案.【详解】由,又,,∴,,故.故答案为:.14、【解析】本题等价于在上单调递增,对称轴,所以,得.即实数的取值范围是点睛:本题考查复合函数的单调性问题.复合函数的单调性遵循“同增异减”的性质.所以本题的单调性问题就等价于在上单调递增,为开口向上的抛物线单调性判断,结合图象即可得到答案15、3【解析】由题意如图:根据平行线分线段成比例定理,可知,又因为,所以根据三角形相似判定方法可以知道∵为的中点∴相似比为∴∴故答案为3三、解答题(本大题共6小题.解答应写出文字说明,证明过程或演算步骤.)16、(1);(2)在上单调递增,在上单调递减;(3)不存在.【解析】(1)直接求出,从而通过解不等式可求得的取值范围;(2)根据二次函数的单调性即可得出分段函数的单调性;(3)首先判断出,从而得到,即在上单调递增;然后把问题转化为在上有两个不等实数根的问题,从而判断出不存在的值.【详解】(1)∵,∴,即,所以,所以的取值范围为.(2)易知,对于,其对称轴为,开口向上,所以在上单调递增;对于,其对称轴为,开口向上,所以在上单调递减,综上知,在上单调递增,在上单调递减;(3)由(2)得,又在上的值域为,所以,又∵在上单调递增,∴,即在上有两个不等实数根,即在上有两个不等实数根,即在上有两个不等实数根,令,则其对称轴为,所以在上不可能存在两个不等的实根,∴不存在满足在上的值域为.17、(1)当时,不等式的解集是当时,不等式的解集是当时不等式的解集是(2)【解析】(1)将不等式,转化成,分别讨论当时,当时,当时,不等式的解集.(2)将对任意,恒成立问题,转化为,恒成立,再利用均值不等式求的最小值,从而得到a的取值范围.【详解】(1)因为不等式所以即当时,解得当时,解得当时,解得综上:当时,不等式的解集是当时,不等式的解集是当时不等式的解集是(2)因为对于任意,恒成立所以,恒成立所以,恒成立令因为当且仅当,即时取等号所以【点睛】本题主要考查了含参一元二次不等式的解法以及恒成立问题,还考查了转化化归的思想及运算求解的能力,属于中档题.18、(1);(2).【解析】(1)根据分母不为零,结合诱导公式和余弦函数的性进行求解即可;(2)根据同角的三角函数关系式,结合二倍角公式、两角差的余弦公式进行求解即可.【详解】(1)由,得,;故的定义域为(2)因为角在第一象限且,所以;从而====.19、(I)(II)【解析】该题属于三角函数的综合问题,在解题的过程中,第一问需要先化简函数解析式,在化简的过程中,应用正余弦的差角公式,化简后利用,从而求得,根据是第一象限角,从而确定出,利用倍角公式建立起所满足的等量关系式,从而求得结果,第二问将相应的函数解析式代入不等式,化简后得到,结合正弦函数的性质,可以求得结果试题解析:(1),求得,根据是第一象限角,所以,且;(2)考点:正余弦差角公式,辅助角公式,同角三角函数关系式,倍角公式,三角不等式20、(1)的不动点为和;(2)①,②证明见解析.【解析】(1)当时,函数,令,即可求解;(2)①由题意,得到的两个实数根为,,设,根据二次函数的图象与性质,列出不等式即可求解;②把可化为,设的两个实数根为,,根据是方程的实数根,得出,结合函数单调性,即可求解.【详解】(1)当时,函数,方程可化为,解得或,所以的不动点为和(2)①因为函数有两个不动点,,所以方程,即的两个实数根为,,记,则的零点为和,因为,所以,即,解得.所以实数的取值范围为②因为方程可化为,即因为,,所以有两个不相等的实数根设的两个实数根为,,不妨设因为函数图象的对称轴为直线,且,,,所以记,因为,且,所以是方程的实数根,所以1是的一个不动点,,因为,所以,,且的图象在上的图象是不间断曲线,所以,使得,又因为在上单调递增,所以,所以是的一个不动点,综上,在上至少有两个不动点【点睛】利用函数的图象求解方程的根的个数或研究不等式问题的策略:1、利用函数的图象研究方程的根的个数:当方程与基本性质有关时,可以通过函数图象来研究方程的根,方程的根就是函数与轴的交点的横坐标,方程的根据就是函数和图象的交点的横坐标;2、利用函数研究不等式:当不等式问题不能用代数法求解但其与函数有关时,常将不等式问题转化为两函数图象的上、下关系问题,从而利用数形结合求解.21、(1);(2)(-∞,-2)∪(0,2)【解析】(1)奇函数有f(0)=0,再由x<0时,f(x)=-f
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2023三年级英语下册 Unit 1 Animals on the farm(Again Please)说课稿 冀教版(三起)
- 8的乘法口诀(说课稿)-2024-2025学年二年级上册数学北京版
- 2024年九年级语文上册 第四单元 第15课《少年中国说》说课稿 北京课改版
- 16 麻雀 第一课时 说课稿-2024-2025学年语文四年级上册统编版
- 2024年春七年级语文下册 第二单元 8 木兰诗说课稿 新人教版
- 1 折彩粽(说课稿)苏教版二年级下册综合实践活动001
- Unit 4 My home Part B Lets learn(说课稿)-2024-2025学年人教PEP版英语四年级上册
- 2025楼房承包合同协议模板
- 2025家居装修工程施工合同范文
- 2025房地产销售代理合同范本
- 物业管理服务应急响应方案
- 医院培训课件:《如何撰写护理科研标书》
- 风车的原理小班课件
- 河南省郑州市2023-2024学年高二上学期期末考试 数学 含答案
- 2024年山东省济南市中考英语试题卷(含答案)
- 2024年北师大版八年级上册全册数学单元测试题含答案
- 江苏省南京市第二十九中2025届数学高二上期末学业质量监测模拟试题含解析
- 六年级数学竞赛试题及答案(六套)
- 八年级下学期期末考试语文试题(PDF版含答案)
- 浙教版八年级下册科学第一章 电和磁整章思维导图
- (正式版)SH∕T 3541-2024 石油化工泵组施工及验收规范
评论
0/150
提交评论