四川省成都市龙泉一中、新都一中等九校2022-2023学年数学高一第二学期期末统考试题含解析_第1页
四川省成都市龙泉一中、新都一中等九校2022-2023学年数学高一第二学期期末统考试题含解析_第2页
四川省成都市龙泉一中、新都一中等九校2022-2023学年数学高一第二学期期末统考试题含解析_第3页
四川省成都市龙泉一中、新都一中等九校2022-2023学年数学高一第二学期期末统考试题含解析_第4页
四川省成都市龙泉一中、新都一中等九校2022-2023学年数学高一第二学期期末统考试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年高一下数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.在等差数列中,若,且它的前项和有最大值,则使成立的正整数的最大值是()A.15 B.16 C.17 D.142.在△ABC中,a,b,c分别为内角A,B,C所对的边,b=c,且满足=,若点O是△ABC外一点,∠AOB=θ(0<θ<π),OA=2OB=2,则平面四边形OACB面积的最大值是()A. B. C.3 D.3.若且,则下列不等式成立的是()A. B. C. D.4.已知,且,,则()A. B. C. D.5.过点且与原点距离最大的直线方程是()A. B.C. D.6.若,直线的倾斜角等于()A. B. C. D.7.已知数列是公差不为零的等差数列,函数是定义在上的单调递增的奇函数,数列的前项和为,对于命题:①若数列为递增数列,则对一切,②若对一切,,则数列为递增数列③若存在,使得,则存在,使得④若存在,使得,则存在,使得其中正确命题的个数为()A.0 B.1 C.2 D.38.中,,,,则()A.1 B. C. D.49.设复数(是虚数单位),则在复平面内,复数对应的点的坐标为()A. B. C. D.10.要得到函数的图象,只需将函数的图象()A.向左平移个单位 B.向右平移个单位C.向左平移个单位 D.向右平移个单位二、填空题:本大题共6小题,每小题5分,共30分。11.在上,满足的的取值范围是______.12.已知三点、、共线,则a=_______.13.等比数列中,若,,则______.14.正六棱柱各棱长均为,则一动点从出发沿表面移动到时的最短路程为__________.15.函数的最小正周期为_______.16.已知圆截直线所得线段的长度是,则圆M与圆的位置关系是_________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.如图所示,在三棱柱中,与都为正三角形,且平面,分别是的中点.求证:(1)平面平面;(2)平面平面.18.如图,在中,点在边上,,,.(1)求边的长;(2)若的面积是,求的值.19.已知的顶点,AB边上的中线CM所在直线方程为,AC边上的高BH所在直线方程为.(1)求C点坐标;(2)求直线BC的方程.20.已知,,当为何值时:(1)与垂直;(2)与平行.21.某班在一次个人投篮比赛中,记录了在规定时间内投进个球的人数分布情况:进球数(个)012345投进个球的人数(人)1272其中和对应的数据不小心丢失了,已知进球3个或3个以上,人均投进4个球;进球5个或5个以下,人均投进2.5个球.(1)投进3个球和4个球的分别有多少人?(2)从进球数为3,4,5的所有人中任取2人,求这2人进球数之和为8的概率.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】

由题意可得,,且,由等差数列的性质和求和公式可得结论.【详解】∵等差数列的前项和有最大值,∴等差数列为递减数列,又,∴,,∴,又,,∴成立的正整数的最大值是17,故选C.【点睛】本题考查等差数列的性质,涉及等差数列的求和公式,属中档题.2、A【解析】

根据正弦和角公式化简得是正三角形,再将平面四边形OACB面积表示成的三角函数,利用三角函数求得最值.【详解】由已知得:即所以即又因为所以所以又因为所以是等边三角形.所以在中,由余弦定理得且因为平面四边形OACB面积为当时,有最大值,此时平面四边形OACB面积有最大值,故选A.【点睛】本题关键在于把所求面积表示成角的三角函数,属于难度题.3、D【解析】

利用作差法对每一个选项逐一判断分析.【详解】选项A,所以a≥b,所以该选项错误;选项B,,符合不能确定,所以该选项错误;选项C,,符合不能确定,所以该选项错误;选项D,,所以,所以该选项正确.故选D【点睛】本题主要考查实数大小的比较,意在考查学生对该知识的理解掌握水平和分析推理能力.4、C【解析】

根据同角三角函数的基本关系及两角和差的正弦公式计算可得.【详解】解:因为,.因为,所以.因为,,所以.所以.故选:【点睛】本题考查同角三角函数的基本关系,两角和差的正弦公式,属于中档题.5、A【解析】

当直线与垂直时距离最大,进而可得直线的斜率,从而得到直线方程。【详解】原点坐标为,根据题意可知当直线与垂直时距离最大,由两点斜率公式可得:所以所求直线的斜率为:故所求直线的方程为:,化简可得:故答案选A【点睛】本题考查点到直线的距离公式,涉及直线的点斜式方程和一般方程,属于基础题。6、A【解析】

根据以及可求出直线的倾斜角.【详解】,,且直线的斜率为,因此,直线的倾斜角为.故选:A.【点睛】本题考查直线倾斜角的计算,要熟悉斜率与倾斜角之间的关系,还要根据倾斜角的取值范围来求解,考查计算能力,属于基础题.7、C【解析】

利用函数奇偶性和单调性,通过举例和证明逐项分析.【详解】①取,,则,故①错;②对一切,,则,又因为是上的单调递增函数,所以,若递减,设,且,且,所以,则,则,与题设矛盾,所以递增,故②正确;③取,则,,令,所以,但是,故③错误;④因为,所以,所以,则,则,则存在,使得,故④正确.故选:C.【点睛】本题函数性质与数列的综合,难度较难.分析存在性问题时,如果比较难分析,也可以从反面去举例子说明命题不成立,这也是一种常规思路.8、C【解析】

利用三角形内角和为可求得;利用正弦定理可求得结果.【详解】由正弦定理得:本题正确选项:【点睛】本题考查正弦定理解三角形,属于基础题.9、A【解析】,所以复数对应的点为,故选A.10、D【解析】

根据三角函数图象的平移变换可直接得到图象变换的过程.【详解】因为,所以向右平移个单位即可得到的图象.故选:D.【点睛】本题考查三角函数图象的平移变换,难度较易.注意左右平移时对应的规律:左加右减.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】

由,结合三角函数线,即可求解,得到答案.【详解】如图所示,因为,所以满足的的取值范围为.【点睛】本题主要考查了特殊角的三角函数值,以及三角函数线的应用,着重考查了推理与运算能力,属于基础题.12、【解析】

由三点、、共线,则有,再利用向量共线的坐标运算即可得解.【详解】解:由、、,则,,又三点、、共线,则,则,解得:,故答案为:.【点睛】本题考查了向量共线的坐标运算,属基础题.13、【解析】

设的首项为,公比为,根据,列出方程组,求出和即可得解.【详解】设的首项为,公比为,则:,解之得,所以:.故答案为:.【点睛】本题考查等比数列中某项的求法,解题关键是根据题意列出方程组,需要注意的是为了简化运算不用直接求解,解出即可,属于基础题.14、【解析】

根据可能走的路径,将所给的正六棱柱展开,利用平面几何知识求解比较.【详解】将所给的正六棱柱下图(2)表面按图(1)展开.,,,故从A沿正侧面和上表面到D1的路程最短为故答案为:.【点睛】本题主要考查了空间几何体展形图的应用,还考查了空间想象和运算求解的能力,属于中档题.15、【解析】

将三角函数进行降次,然后通过辅助角公式化为一个名称,最后利用周期公式得到结果.【详解】,.【点睛】本题主要考查二倍角公式,及辅助角公式,周期的运算,难度不大.16、相交【解析】

根据直线与圆相交的弦长公式,求出的值,结合两圆的位置关系进行判断即可.【详解】解:圆的标准方程为,则圆心为,半径,圆心到直线的距离,圆截直线所得线段的长度是,即,,则圆心为,半径,圆的圆心为,半径,则,,,,即两个圆相交.故答案为:相交.【点睛】本题主要考查直线和圆相交的应用,以及两圆位置关系的判断,根据相交弦长公式求出的值是解决本题的关键.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)见解析.(2)见解析.【解析】

(1)由分别是的中点,证得,由线面平行的判定定理,可得平面,平面,再根据面面平行的判定定理,即可证得平面平面.(2)利用线面垂直的判定定理,可得平面,再利用面面垂直的判定定理,即可得到平面平面.【详解】(1)在三棱柱中,因为分别是的中点,所以,根据线面平行的判定定理,可得平面,平面又,∴平面平面.(2)在三棱柱中,平面,所以,又,,所以平面,而平面,所以平面平面.【点睛】本题考查线面位置关系的判定与证明,熟练掌握空间中线面位置关系的定义、判定、几何特征是解答的关键,其中垂直、平行关系证明中应用转化与化归思想的常见类型:(1)证明线面、面面平行,需转化为证明线线平行;(2)证明线面垂直,需转化为证明线线垂直;(3)证明线线垂直,需转化为证明线面垂直.18、(1)2;(2)【解析】

(1)设,利用余弦定理列方程可得:,解方程即可(2)利用(1)中结果即可判断为等边三角形,即可求得中边上的高为,再利用的面积是即可求得:,结合余弦定理可得:,再利用正弦定理可得:,问题得解【详解】(1)在中,设,则,由余弦定理得:即:解之得:,即边的长为2.(2)由(1)得为等边三角形,作于,则∴,故在中,由余弦定理得:∴在中,由正弦定理得:,即:∴∴【点睛】本题主要考查了利用正、余弦定理解三角形,还考查了三角形面积公式的应用及计算能力,属于中档题19、(1);(2)【解析】

(1)根据点斜式求出AC边所在的直线方程,再由CM所在直线方程,两方程联立即可求解.(2)设,根据题意可得,,两式联立解得的值,再根据两点式即可得到直线BC的方程.【详解】(1)AC边上的高BH所在直线方程为,且,AC边所在的直线方程为,由AB边上的中线CM所在直线方程为,,解得,故C点坐标为.(2)设,则由AC边上的高BH所在直线方程为,可得,AB边上的中线CM所在直线方程为,,,解得,故点的坐标为,则直线BC的方程为,即.【点睛】本题考查了点斜式方程、两点式方程,同时考查了解二元一次方程组,属于基础题.20、(1);(2)【解析】

根据向量坐标运算计算得到与的坐标(1)由垂直关系得到数量积为,可构造方程求得;(2)由向量平行的坐标表示可构造方程求得.【详解】,(1)由与垂直得:,解得:(2)由与平行得:,解得:【点睛】本题考查平面向量平行和垂直的坐标表示;关键是能够明确两向量垂直可得;两向量平行可得.21、(1)投进3个球和4个球的分别有2人和2人;(2).【解析】

(1)设投进3个球和4个球的分别有,人,则,解方程组即得解.(2)利用古典概型的概率求这2人进球数之和为8的概率.【详解】解:(1)设投进3

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论