版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年八下数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.下列每一组数据中的三个数值分别为三角形的三边长,不能构成直角三角形的是()A.3、4、5 B.6、8、10 C.、2、 D.5、12、132.不等式2x-1≤5的解集在数轴上表示为()A. B. C. D.3.若与|x﹣y﹣3|互为相反数,则x+y的值为()A.3 B.9 C.12 D.274.如图,DE是△ABC的中位线,过点C作CF∥BD交DE的延长线于点F,则下列结论正确的是()A.EF=CF B.EF=DE C.CF<BD D.EF>DE5.函数中自变量x的取值范围是()A. B. C. D.6.如果方程组的解x、y的值相等则m的值是()A.1 B.-1 C.2 D.-27.在同一平面直角坐标系中,函数与的图象可能是()A. B.C. D.8.一次函数与的图象如图所示,则下列结论:①k<0;②a<0,b<0;③当x=3时,y1=y2;④不等式的解集是x<3,其中正确的结论个数是()A.0 B.1 C.2 D.39.下列各曲线中,不能表示y是x的函数的是()A.B.C.D.10.用反证法证明“若a⊥c,b⊥c,则a∥b”时,应假设(
)A.a不垂直于c B.a垂直于b C.a、b都不垂直于c D.a与b相交11.如图,ΔABC中,CD是AB边上的高,若AB=1.5,BC=0.9,AC=1.2,则CD的长为()A.0.72 B.1.125 C.2 D.不能确定12.若分式在实数范围内有意义,则实数的取值范围是()A. B. C. D.二、填空题(每题4分,共24分)13.2018年6月1日,美国职业篮球联赛(NBA)总决赛第一场在金州勇士队甲骨文球馆进行.据统计,当天通过腾讯视频观看球赛的人数突破5250万.用科学记数法表示“5250”为_____.14.如图,已知A点的坐标为,直线与y轴交于点B,连接AB,若,则____________.15.将直线向上平移2个单位得到直线_____________.16.已知,是二元一次方程组的解,则代数式的值为_____.17.关于x的一元二次方程x2﹣2x+m=0有两个实数根,则m的取值范围是_____.18.如图,折叠矩形纸片ABCD,使点B落在边AD上,折痕EF的两端分别在AB、BC上(含端点),且AB=6cm,BC=10cm.则折痕EF的最大值是cm.三、解答题(共78分)19.(8分)如图,已知△ABC中,DE∥BC,S△ADE︰S四边形BCED=1︰2,,试求DE的长.20.(8分)(1)解不等式;并把解集表示在数轴上(2)解方程:21.(8分)先化简,然后从,,,中选择一个合适的数作为的值代入求值22.(10分)记面积为18cm2的平行四边形的一条边长为x(cm),这条边上的高线长为y(cm).(1)写出y关于x的函数表达式及自变量x的取值范围;(2)在如图直角坐标系中,用描点法画出所求函数图象;(3)若平行四边形的一边长为4cm,一条对角线长为cm,请直接写出此平行四边形的周长.23.(10分)如图,四边形为正方形.在边上取一点,连接,使.(1)利用尺规作图(保留作图痕迹):分别以点、为圆心,长为半径作弧交正方形内部于点,连接并延长交边于点,则;(2)在前面的条件下,取中点,过点的直线分别交边、于点、.①当时,求证:;②当时,延长,交于点,猜想与的数量关系,并说明理由.24.(10分)如图,四边形在平面直角坐标系的第一象限内,其四个顶点分别在反比例函数与的图象上,对角线于点,轴于点.(1)若,试求的值;(2)当,点是线段的中点时,试判断四边形的形状,并说明理由.(3)直线与轴相交于点.当四边形为正方形时,请求出的长度.25.(12分)如图1,正方形ABCD的边长为4,对角线AC、BD交于点M.(1)直接写出AM=;(2)P是射线AM上的一点,Q是AP的中点,设PQ=x.①AP=,AQ=;②以PQ为对角线作正方形,设所作正方形与△ABD公共部分的面积为S,用含x的代数式表示S,并写出相应的x的取值范围.(直接写出,不需要写过程)26.某学校在商场购买甲、乙两种不同足球,购买甲种足球共花费2000元,购买乙种足球共花费1400元,购买甲种足球数量是购买乙种足球数量的2倍.且购买一个乙种足球比购买一个甲种足球多花20元.(1)求购买一个甲种足球、一个乙种足球各需多少元?(2)为响应“足球进校园”的号召,这所学校决定再次购买甲、乙两种足球共50个.并且购进乙种足球的数量不少于甲种足球数量的,学校应如何采购才能使总花费最低?
参考答案一、选择题(每题4分,共48分)1、C【解析】
解:A.32+42=52,故是直角三角形,故A选项不符合题意;
B.62+82=102,故是直角三角形,故B选项不符合题意;C.,故不是直角三角形,故C选项符合题意;
D.52+122=132,故是直角三角形,故D选项不符合题意.
故选:C.考点:直角三角形的判定2、A【解析】
先求此不等式的解集,再根据不等式的解集在数轴上表示方法画出图示即可求得.【详解】解不等式得:x⩽3,
所以在数轴上表示为
故选A.【点睛】本题考查在数轴上表示不等式的解集,解题的关键是掌握在数轴上表示不等式的解集.3、D【解析】依题意得.∴x+y=27.故选D.4、B【解析】试题分析:∵DE是△ABC的中位线,∴DE∥BC,DE=BC,∵CF∥BD,∴四边形BCFD是平行四边形,∴DF=BC,CF=BD,∴EF=DF-DE=BC-DE=BC=DE.故选B.点睛:本题考查了三角形中位线定理和平行四边形的判定与性质,得出四边形BCFD是平行四边形是解决此题的关键.5、B【解析】
根据二次根式中的被开方数非负数的性质进行计算,即可得到答案.【详解】由二次根式中的被开方数非负数的性质可得,则,故选择B.【点睛】本题考查函数自变量的取值范围,解题的关键是知道二次根式中的被开方数非负数.6、B【解析】
由题意x、y值相等,可计算出x=y=2,然后代入含有m的代数式中计算m即可【详解】x、y相等即x=y=2,x-(m-1)y=6即2−(m-1)×2=6解得m=-1故本题答案应为:B【点睛】二元一次方程组的解法是本题的考点,根据题意求出x、y的值是解题的关键7、C【解析】
根据一次函数及二次函数的图像性质,逐一进行判断.【详解】解:A.由一次函数图像可知a>0,因此二次函数图像开口向上,但对称轴应在y轴左侧,故此选项错误;B.由一次函数图像可知a<0,而由二次函数图像开口方向可知a>0,故此选项错误;C.由一次函数图像可知a<0,因此二次函数图像开口向下,且对称轴在y轴右侧,故此选项正确;D.由一次函数图像可知a>0,而由二次函数图像开口方向可知a<0,故此选项错误;故选:C.【点睛】本题考查二次函数与一次函数图象的性质,解题的关键是利用数形结合思想分析图像,本题属于中等题型.8、D【解析】
解:根据一次函数的图象可得:a<0,b>0,k<0,则①正确,②错误;根据一次函数和方程以及不等式的关系可得:③和④是正确的故选:D.【点睛】本题考查一次函数的图象及一次函数与不等式.9、A【解析】试题分析:在坐标系中,对于x的取值范围内的任意一点,通过这点作x轴的垂线,则垂线与图形只有一个交点.根据定义即可判断.解:显然B、C、D三选项中,对于自变量x的任何值,y都有唯一的值与之相对应,y是x的函数;A选项对于x取值时,y都有3个或2个值与之相对应,则y不是x的函数;故选:A.10、D【解析】
反证法的步骤中,第一步是假设结论不成立,反面成立,即可解答.【详解】解:用反证法证明“在同一平面内,若a⊥c,b⊥c,则a∥b”,应假设:a不平行b或a与b相交.故选择:D.【点睛】本题考查了反证法,解此题关键要懂得反证法的意义及步骤.反证法的步骤是:(1)假设结论不成立;(2)从假设出发推出矛盾;(3)假设不成立,则结论成立.在假设结论不成立时要注意考虑结论的反面所有可能的情况,如果只有一种,那么否定一种就可以了,如果有多种情况,则必须一一否定.11、A【解析】
先根据勾股定理的逆定理证明△ABC是直角三角形,根据计算直角三角形的面积的两种计算方法求出斜边上的高CD.【详解】∵AB=1.5,BC=0.9,AC=1.2,∴AB2=∴AB∴∠ACB=90°,∵CD是AB边上的高,∴S1.5CD=1.2×0.9,CD=0.72.故选A.【点睛】该题主要考查了勾股定理的逆定理、三角形的面积公式及其应用问题,解题的方法是运用勾股定理首先证明△ABC为直角三角形,解题的关键是灵活运用三角形的面积公式来解答.12、D【解析】
根据分式有意义的条件即可求出答案.【详解】解:由分式有意义的条件可知:,,故选:.【点睛】本题考查分式有意义的条件,解题的关键是熟练运用分式有意义的条件,本题属于基础题型.二、填空题(每题4分,共24分)13、5.25×1【解析】
科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】解:5250=5.25×1,故答案为5.25×1.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.14、2【解析】
如图,设直线y=x+b与x轴交于点C,由直线的解析式是y=x+b,可得OB=OC=b,继而得∠BCA=45°,再根据三角形外角的性质结合∠α=75°可求得∠BAC=30°,从而可得AB=2OB=2b,根据点A的坐标可得OA的长,在Rt△BAO中,根据勾股定理即可得解.【详解】设直线y=x+b与x轴交于点C,如图所示,∵直线的解析式是y=x+b,∴OB=OC=b,则∠BCA=45°;又∵∠α=75°=∠BCA+∠BAC=45°+∠BAC,∴∠BAC=30°,又∵∠BOA=90°,∴AB=2OB=2b,而点A的坐标是(,0),∴OA=,在Rt△BAO中,AB2=OB2+OA2,即(2b)2=b2+()2,∴b=2,故答案为:2.【点睛】本题考查了一次函数的性质、勾股定理的应用、三角形外角的性质等,求得∠BAC=30°是解答本题的关键.15、【解析】
利用平移时k的值不变,只有b值发生变化,由上加下减得出即可.【详解】解:直线y=x-1向上平移2个单位,得到直线的解析式为y=x-1+2=x+1.故答案为:【点睛】本题考查了一次函数图象与几何变换,熟记直线解析式平移的规律:“上加下减,左加右减”是解题的关键.16、1【解析】
依据平方差公式求解即可.【详解】,,.故答案为:1.【点睛】本题主要考查的是二元一次方程组的解和平方差公式,发现所求代数式与已知方程组之间的关系是解题的关键.17、m≤1【解析】
根据方程有实数根,得出△≥0,建立关于m的不等式,求出m的取值范围即可.【详解】解:由题意知,△=4﹣4m≥0,∴m≤1,故答案为m≤1.【点睛】此题考查了根的判别式,掌握一元二次方程根的情况与判别式△的关系:△>0⇔方程有两个不相等的实数根;△=0⇔方程有两个相等的实数根;△<0⇔方程没有实数根是本题的关键.18、.【解析】试题分析:点F与点C重合时,折痕EF最大,由翻折的性质得,BC=B′C=10cm,在Rt△B′DC中,B′D==8cm,∴AB′=AD﹣B′D=10﹣8=2cm,设BE=x,则B′E=BE=x,AE=AB﹣BE=6﹣x,在Rt△AB′E中,AE2+AB′2=B′E2,即(6﹣x)2+22=x2,解得x=,在Rt△BEF中,EF=cm.故答案是.考点:翻折变换(折叠问题).三、解答题(共78分)19、【解析】解:因为DE∥BC,所以△ADE∽△ABC,所以.又S△ADE︰S四边形BCED=1︰2,所以S△ADE︰S△ABC=1︰3,即.而,所以.20、(1);(2)【解析】
(1)根据解一元一次不等式的步骤,先去分母,再去括号,移项合并,系数化为1即可;(2)通过去分母将分式方程化成整式方程,解出整式方程的根,检验根是否是原分式方程的根即可.【详解】解:(1)去分母,得去括号,得.移项,得合并同类项,得.系数化为1,得在数轴上表示如下,(2)解:去分母,得解得经检验,是原方程的根.【点睛】本题考查了不等式的解法及分式方程的解法,解分式方程的基本思想是消元,注意解分式方程时一定要检验.21、【解析】
根据分式的运算进行化简,再根据分母不为零代入一个数求解.【详解】解:原式当,原式;或当时,原式【点睛】此题主要考查分式的化简求值,解题的关键是熟知分式运算法则.22、(1)y(x>0);(2)答案见解析;(3)8.【解析】
(1)根据平行四边形的面积公式,列出函数关系式即可;(2)利用描点法画出函数图象即可;(3)如图作DE⊥BC交BC的延长线于E.解直角三角形求出CD即可.【详解】(1)由题意,xy=18,所以y(x>0);(2)列表如下:函数图象如图所示:(3)如图作DE⊥BC交BC的延长线于E,∵BC=4,∴DE,∵BD,∴BE6,∴EC=2,∴CD,∴此平行四边形的周长=8.【点睛】本题考查了反比例函数的性质、平行四边形的性质、解直角三角形等知识,解题的关键是灵活运用所学知识解决问题23、(1)作图见解析;(2)①见解析;②数量关系为:或.理由见解析;【解析】
(1)按照题意,尺规作图即可;(2)连接PE,先证明PQ垂直平分BE,得到PB=PE,再证明,得到,利用在直角三角形中,30°所对的直角边等于斜边的一半,即可解答;(3)NQ=2MQ或NQ=MQ,分两种情况讨论,作辅助线,证明,即可解答.【详解】(1)如图1,分别以点、为圆心,长为半径作弧交正方形内部于点,连接并延长交边于点;图1(2)①连接,如图2,图2点是的中点,垂直平分.,,,,,,.②数量关系为:或.理由如下,分两种情况:I、如图3所示,过点作于点交于点,则.图3正方形中,,.在和中,..又,,...Ⅱ、如图4所示,过点作于点交于点,则.图4同理可证.此时.又,..,.【点睛】本题为正方形和三角形变化综合题,难度较大,熟练掌握相关性质定理以及分类讨论思想是解答本题的关键.24、(1)1;(2)(2)四边形ABCD为菱形,理由见解析;(3)【解析】
(1)由点N的坐标及CN的长度可得出点C的坐标,再利用反比例函数图象上点的坐标特征可求出点n的值;(2)利用反比例函数图象上点的坐标特征可得出点A,C的坐标,结合点P为线段AC的中点可得出点P的坐标,利用反比例函数图象上点的坐标特征可得出点B,D的坐标,结合点P的坐标可得出BP=DP,利用“对角线互相垂直平分的四边形为菱形”可证出四边形ABCD为菱形;(3)利用正方形的性质可得出AC=BD且点P为线段AC及BD的中点,利用反比例函数图象上点的坐标特征可求出点A,C,B,D的坐标,结合AC=BD可得出关于n的方程,解之即可得出结论.【详解】(1)∵点N的坐标为(2,0),CN⊥x轴,且,∴点C的坐标为(2,).∵点C在反比例函数的图象上,∴n=2×=1.(2)四边形ABCD为菱形,理由如下:当n=2时,.当x=2时,,∴点C的坐标为(2,1),点A的坐标为(2,4).∵点P是线段AC的中点,∴点P的坐标为(2,).当y=时,,解得:,∴点B的坐标为,点D的坐标为,∴,∴BP=DP.又∵AP=CP,AC⊥BD,∴四边形ABCD为菱形.(3)∵四边形ABCD为正方形,∴AC=BD,且点P为线段AC及BD的中点.当x=2时,y1=n,y2=2n,∴点A的坐标为(2,2n),点C的坐标为(2,n),AC=n,∴点P的坐标为.同理,点B的坐标为,点D的坐标为,.∵AC=BD,∴,∴,∴点A的坐标为,点B的坐标为.设直线AB的解析式为y=kx+b(k≠0),将A,B代入y=kx+b,得:,解得:,∴直线AB的解析式为y=x+.当x=0时,y=x+,∴点E的坐标为(0,),∴当四边形ABCD为正方形时,OE的长度为.【点睛】本题考查了反比例函数图象上点的坐标特征、菱形的判定以及正方形的性质,解题的关键是:(1)根据点C的坐标,利用反比例函数图象上点的坐标特征求出n值;(2)利用“对角线互相垂直平分的四边形为菱形”,证出四边形ABCD为菱形;(3)利用正方形的性质及反比例函数图象上点的坐标特征,找出关于n的方程.25、(1);(2)①2x,x;②S(0<x≤).【解析】
(1)根据勾股定理可得AC=,进而根据正方形对角线相等而且互相平分,可得AM的长;(2)由中点定义可得AP=2PQ,AQ=PQ,然后由正方形与△ABD公共部分可得是以QM为高的等腰直角三角形,据此即可解答.【详解】解:(1
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论