版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
湖北省黄石市孝感中学高一数学理下学期期末试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.直线的倾斜角是()A.150°B.135°C.120°D.30°参考答案:A2.(12)已知正方体外接球的体积是,那么正方体的棱长等于
(A)(B)(C)(D)参考答案:D略3.某校高一、高二年级各有7个班参加歌咏比赛,他们的得分的茎叶图如图所示,对这组数据分析正确的是()A.高一的中位数大,高二的平均数大B.高一的平均数大,高二的中位数大C.高一的中位数、平均数都大D.高二的中位数、平均数都大参考答案:A【考点】茎叶图;众数、中位数、平均数.【专题】图表型.【分析】根据给出的两组数据,把数据按照从小到大排列,根据共有7个数字,写出中位数,观察两组数据的集中区域,得到结果.【解答】解:由题意知,∵高一的得分按照从小到大排列是82,83,85,93,97,98,99共有7个数字,最中间一个是93,高二得分按照从小到大的顺序排列是88,88,89,89,97,98,99共有7个数据,最中间一个是89,∴高一的中位数大,再观察数据的集中区域,高二的更大些,故高二的平均数大.故选A.【点评】本题考查中位数、平均数,对于一组数据,通常要求的是这组数据的众数,中位数,平均数分别表示一组数据的特征,这样的问题可以出现在选择题或填空题,考查最基本的知识点.4.函数为增函数的区间是A.
B.
C.
D.参考答案:C5.函数在区间上的最大值与最小值的和为3,则等于
(
)
A.
B.2
C.4
D.参考答案:B6.若数列满足:存在正整数T,对于任意正整数都有成立,则称数列为周期数列,周期为.已知数列满足则下列结论中错误的是
(
)
A.若则可以取3个不同的值B.若数列是周期为3的数列C.对于任意的正整数T且,存在,使得是周期为T的数列D.存在有理数且使得数列是周期数列参考答案:D略7.若x,y满足,则z=x+2y的最大值为()A.0 B.1 C. D.2参考答案:D【分析】作出题中不等式组表示的平面区域,再将目标函数z=x+2y对应的直线进行平移,即可求出z取得最大值.【解答】解:作出不等式组表示的平面区域,当l经过点B时,目标函数z达到最大值∴z最大值=0+2×1=2.故选:D.8.若a>b>0,则下列不等式中一定成立的是(
)A. B. C. D.参考答案:D略9.已知函数f(x)=,若f(a)=,则实数a的值为(
)A.﹣1 B. C.﹣1或 D.1或﹣参考答案:C考点:函数的值;对数的运算性质.专题:计算题.分析:本题考查的分段函数的求值问题,由函数解析式,我们可以先计算当x>0时的a值,然后再计算当x≤0时的a值,最后综合即可.解答:解:当x>0时,log2x=,∴x=;当x≤0时,2x=,∴x=﹣1.则实数a的值为:﹣1或,故选C.点评:分段函数求值问题分段处理,这是研究分段函数图象和性质最核心的理念,属于基础题.10.已知=(sin(x+),sin(x﹣)),=(cos(x﹣),cos(x+)),?=,且x∈[﹣,],则sin2x的值为()A. B. C. D.参考答案:B【考点】平面向量数量积的运算.【分析】先根据向量的数量积和两角和的正弦公式求出sin(2x+)=,根据同角的三角函数的关系,以及两角差的正弦公式,即可求出.【解答】解:∵=(sin(x+),sin(x﹣)),=(cos(x﹣),cos(x+)),?=,∴sin(x+)?cos(x﹣)+sin(x﹣)?cos(x+)=sin(2x+)=,∵x∈[﹣,],∴2x+∈[﹣,],∴cos(2x+)=,∴sin2x=sin(2x+﹣)=sin(2x+)cos﹣cos(2x+)sin=×﹣×=,故选:B二、填空题:本大题共7小题,每小题4分,共28分11.某超市有普通水果和无公害水果若干千克,现按的比例分层抽样,抽取了15千克普通水果,45千克无公害水果进行分析,则该超市共有水果千克.参考答案:1200略12.设,若关于x的不等式对任意的恒成立,则的最大值为_____.参考答案:【分析】若不等式对任意的恒成立,则不等式的解集必须包含.【详解】不等式等价于:①或②若不等式对任意的恒成立,则不等式的解集必须包含.①当时,①的解不包含0,而中有0,与题意不符;当时,①的解为且,不包含,与题意不符.②若不等式的解集包含,必须即所以,当时,有最大值.【点睛】本题考查不等式的解法,集合的包含关系..13.已知f(x)=asinx-bcosx且x=为f(x)的一条对称轴,则a:b的值为.参考答案:a:b=-1.解析:由题设得
又x=为f(x)的一条对称轴,∴当x=时f(x)取得最值
∴即
∴a:b=-1.14.某校田径队共有男运动员45人,女运动员36人,若采用分层抽样的方法在全体运动员中抽取18人进行体质测试,则抽到的女运动员人数为
.参考答案:815.已知,且是第二象限角,则
;参考答案:略16.若平面向量满足,,则的取值范围为 .参考答案:,设,则,,由平行四边形的性质可得,,,的取值范围为,故答案为
17.函数y=f(x)的图象如图(含曲线端点),记f(x)的定义域为A,值域为B,则A∩B=.参考答案:[﹣2,3]【考点】交集及其运算.【专题】数形结合;函数的性质及应用;集合.【分析】根据y=f(x)图象,确定出定义域与值域,即为A与B,求出两集合的交集即可.【解答】解:由题意得:A=[﹣2,4]∪[5,8],B=[﹣4,3],则A∩B=[﹣2,3],故答案为:[﹣2,3]【点评】此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.(附加题)(本小题满分15分)如图,在四棱锥中,底面,,,是的中点.(Ⅰ)求和平面所成的角的大小;(Ⅱ)证明平面;(Ⅲ)求二面角的正弦值.
参考答案:附加题:(Ⅰ)解:在四棱锥中,因底面,平面,故.又,,从而平面.故在平面内的射影为,从而为和平面所成的角.在中,,故.所以和平面所成的角的大小为.(Ⅱ)证明:在四棱锥中,因底面,平面,故.由条件,,面.又面,.由,,可得.是的中点,,.综上得平面.(Ⅲ)解:过点作,垂足为,连结.由(Ⅱ)知,平面,在平面内的射影是,则.因此是二面角的平面角.由已知,得.设,得,,,.在中,,,则.在中,.略19.设△ABC的内角A,B,C的对边分别为a,b,c,且bcosA=asinB.(1)求角A的大小;(2)若a=1,求△ABC面积的最大值.参考答案:【考点】HP:正弦定理.【分析】(1)根据正弦定理化简可得sinAsinB=sinBcosA,结合sinB≠0,可求tanA,由范围0<A<π,可求A的值.(2)由已知利用余弦定理,基本不等式可求bc≤2,进而利用三角形面积公式即可计算得解.【解答】解:(1)在△ABC中,∵asinB=bcosA.由正弦定理,得:sinAsinB=sinBcosA,∵0<B<π,sinB≠0.∴sinA=cosA,即tanA=.∵0<A<π,∴A=.(2)∵由a=1,A=,∴由余弦定理,1=b2+c2﹣bc≥2bc﹣bc,得:bc≤2,当且仅当b=c等号成立,∴△ABC的面积S=bcsinA≤(2+)×=,即△ABC面积的最大值为.20.已知函数f(x)=1﹣,x∈(﹣∞,0),判断f(x)的单调性并用定义证明.参考答案:解:x增大时,减小,增大,f(x)增大,∴f(x)在(﹣∞,0)内单调递增,证明如下:设x1<x2<0,则:;∵x1<x2<0;∴x1﹣x2<0,x1x2>0;∴f(x1)<f(x2);∴f(x)在(﹣∞,0)内单调递增.考点:函数单调性的判断与证明.专题:证明题;函数思想;综合法;函数的性质及应用.分析:可以看出x增大时,增大,从而f(x)增大,从而得出该函数在(﹣∞,0)内单调递增.根据增函数的定义,设任意的x1<x2<0,然后作差,通分,证明f(x1)<f(x2)即可得出f(x)在(﹣∞,0)内单调递增.解答:解:x增大时,减小,增大,f(x)增大,∴f(x)在(﹣∞,0)内单调递增,证明如下:设x1<x2<0,则:;∵x1<x2<0;∴x1﹣x2<0,x1x2>0;∴f(x1)<f(x2);∴f(x)在(﹣∞,0)内单调递增.点评:考查增函数的定义,以及根据增函数的定义判断并证明一个函数为增函数的方法和过程,作差的方法比较f(x1),f(x2),作差后,是分式的一般要通分21.(本小题满分13分)某宾馆有相同标准的床位100张,根据经验,当该宾馆的床价(即每张床价每天的租金)不超过10元时,床位可以全部租出,当床位高于10元时,每提高1元,将有3张床位空闲.为了获得较好的效益,该宾馆要给床位订一个合适的价格,条件是:①要方便结账,床价应为1元的整数倍;②该宾馆每日的费用支出为575元,床位出租的收入必须高于支出,而且高出得越多越好.若用表示床价,用表示该宾馆一天出租床位的净收入(即除去每日的费用支出后的收入)(1)把表示成的函数,并求出其定义域;(2)试确定该宾馆床位定为多少时既符合上面的两个条件,又能使净收入最多?参考答案:解:(1)由已知有令.由得,又由得所以函数为函数的定义域为.略22.在平面直角坐标系xOy中,已知点,.(Ⅰ)若,,求;(Ⅱ)当时,的最大值为5,求a的值.参考答案:(Ⅰ)120°(Ⅱ)或.【分析】(Ⅰ)利用同角的三角函数的关
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度艺术品买卖合同标的及质量标准
- 2024年度网络广告发布合同
- 2024年度茶楼与旅行社合作合同
- 2024年度企业品牌形象重塑与市场营销策划合同
- 2024年度汽车经销商授权合同2篇
- 道路与桥梁工程毕业设计计算书
- 2024年度航天科技项目研发与投资合同
- 2024年度租赁合同标的物的保险责任
- 2024中国电建西北勘测设计研究院限公司招聘15人(陕西)易考易错模拟试题(共500题)试卷后附参考答案
- 2024中国电信全渠道运营中心校园招聘易考易错模拟试题(共500题)试卷后附参考答案
- 《1980年代“现代派”论争中的现代主义与现实主义问题》
- 材料成型及控制工程基础知识单选题100道及答案解析
- 2024年保育员(中级)考试题库(含答案)
- 环保项目设备采购实施方案
- 数学-江西省稳派上进联考2024-2025学年2025届高三上学期11月调研测试试题和答案
- 2024-2025学年北京十三中分校八年级(上)期中数学试卷
- 湖南财政经济学院《证券投资学》2022-2023学年第一学期期末试卷
- 《喜迎建队日 争做好少年》主题班会教案3篇
- 2024-2025学年鲁教版(五四制)八年级数学上册期中测试题
- (高级)增材制造设备操作员技能鉴定理论考试题库(浓缩500题)
- 高盛-比亚迪:全球汽车市场上的新兴领先企业-2024-10-企业研究
评论
0/150
提交评论