2022-2023学年北师大长春附属学校高二数学第二学期期末考试模拟试题含解析_第1页
2022-2023学年北师大长春附属学校高二数学第二学期期末考试模拟试题含解析_第2页
2022-2023学年北师大长春附属学校高二数学第二学期期末考试模拟试题含解析_第3页
2022-2023学年北师大长春附属学校高二数学第二学期期末考试模拟试题含解析_第4页
2022-2023学年北师大长春附属学校高二数学第二学期期末考试模拟试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023高二下数学模拟试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.给出以下命题,其中真命题的个数是若“或”是假命题,则“且”是真命题命题“若,则或”为真命题已知空间任意一点和不共线的三点,若,则四点共面;直线与双曲线交于两点,若,则这样的直线有3条;A.1 B.2 C.3 D.42.若函数,则()A.1 B. C.27 D.3.函数的单调递增区间是()A. B.C. D.4.2019年6月7日,是我国的传统节日“端午节”。这天,小明的妈妈煮了7个粽子,其中3个腊肉馅,4个豆沙馅。小明随机抽取出两个粽子,若已知小明取到的两个粽子为同一种馅,则这两个粽子都为腊肉馅的概率为()A. B. C. D.5.某校开设10门课程供学生选修,其中、、三门由于上课时间相同,至多选一门,学校规定每位学生选修三门,则每位学生不同的选修方案种数是()A.70 B.98 C.108 D.1206.已知,其中、是实数,是虚数单位,则复数的共轭复数对应的点位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限7.下列函数中与函数相同的是()A. B. C. D.8.若直线是曲线的切线,则()A. B.1 C.2 D.9.从名男生和名女生中选出名学生参加一项活动,要求至少一名女生参加,不同的选法种数是()A. B. C. D.10.在中,,若,则A. B. C. D.11.若,都是实数,则“”是“”的()A.充分而不必要条件 B.必要而不充分条件C.充分必要条件 D.既不充分也不必要条件12.已知实数满足则的最大值是()A.-2 B.-1 C.1 D.2二、填空题:本题共4小题,每小题5分,共20分。13.如图①,矩形的边,直角三角形的边,,沿把三角形折起,构成四棱锥,使得在平面内的射影落在线段上,如图②,则这个四棱锥的体积的最大值为__________.14.在处的导数值是___________.15.在平面直角坐标系中,已知为圆上的一个动点,,则线段的中点的轨迹方程是______.16.已知空间向量,,(其中、),如果存在实数,使得成立,则_____________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)我们称点到图形上任意一点距离的最小值为点到图形的距离,记作(1)求点到抛物线的距离;(2)设是长为2的线段,求点集所表示图形的面积;(3)试探究:平面内,动点到定圆的距离与到定点的距离相等的点的轨迹.18.(12分)已知集合,,.(1)求;(2)若“”是“”的必要不充分条件,求实数a的取值范围.19.(12分)设命题:方程表示双曲线;命题:“方程表示焦点在轴上的椭圆”.(1)若和均为真命题,求的取值范围;(2)若为真命题,为假命题,求实数的取值范围.20.(12分)有名学生排成一排,求分别满足下列条件的排法种数,要求列式并给出计算结果.(1)甲不在两端;(2)甲、乙相邻;(3)甲、乙、丙三人两两不得相邻;(4)甲不在排头,乙不在排尾。21.(12分)已知函数(1)当为何值时,轴为曲线的切线;(2)若存在(是自然对数的底数),使不等式成立,求实数的取值范围.22.(10分)已知函数.(1)解不等式;(2)若对恒成立,求实数的取值范围.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】(1)若“或”是假命题,则是假命题p是真命题,是假命题是真命题,故且真命题,选项正确.(2)命题“若,则或”的逆否命题是若a=2,且b=3,则a+b=5.这个命题是真命题,故原命题也是真命题.(3)∵++=1,∴P,A,B,C四点共面,故(3)正确,(4)由双曲线方程得a=2,c=3,即直线l:y=k(x﹣3)过双曲线的右焦点,∵双曲线的两个顶点之间的距离是2a=4,a+c=2+3=5,∴当直线与双曲线左右两支各有一个交点时,当k=0时2a=4,则满足|AB|=5的直线有2条,当直线与实轴垂直时,当x=c=3时,得,即=,即则y=±,此时通径长为5,若|AB|=5,则此时直线AB的斜率不存在,故不满足条件.综上可知有2条直线满足|AB|=5,故(4)错误,故答案为C.2、C【解析】

求导后代入可构造方程求得,从而得到,代入可求得结果.【详解】,,解得:,,.故选:.【点睛】本题考查导数值的求解问题,关键是能够明确为实数,其导数为零.3、C【解析】

首先利用诱导公式化简函数解析式,之后应用余弦函数单调区间的公式解关于x的不等式,即可得到所求单调递增区间.【详解】因为,根据余弦函数的性质,令,可得,所以函数的单调递增区间是,故选C.【点睛】该题考查的是有关余弦型函数的单调怎区间的求解问题,在解题的过程中,涉及到的知识点有诱导公式,余弦函数的单调增区间,余弦型函数的性质,注意整体角思维的运用.4、B【解析】

设事件为“取出两个粽子为同一种馅”,事件为“取出的两个粽子都为腊肉馅”,计算(A)、的值,从而求得的值.【详解】由题意,设事件为“取出两个粽子为同一种馅”,事件为“取出的两个粽子都为腊肉馅”,则(A),,.故选:B.【点睛】本题主要考查古典概型和条件概率的计算,意在考查学生对这些知识的理解掌握水平和计算能力.5、B【解析】根据题意,分2种情况讨论:①、从A,B,C三门中选出1门,其余7门中选出2门,有种选法,②、从除A,B,C三门之外的7门中选出3门,有种选法;故不同的选法有63+35=98种;故选:B.点睛:(1)解排列组合问题要遵循两个原则:①按元素(或位置)的性质进行分类;②按事情发生的过程进行分步.具体地说,解排列组合问题常以元素(或位置)为主体,即先满足特殊元素(或位置),再考虑其他元素(或位置).(2)不同元素的分配问题,往往是先分组再分配.在分组时,通常有三种类型:①不均匀分组;②均匀分组;③部分均匀分组.注意各种分组类型中,不同分组方法的求解.6、D【解析】

由得,根据复数相等求出的值,从而可得复数的共轭复数,得到答案.【详解】由有,其中、是实数.所以,解得,所以则复数的共轭复数为,则在复平面内对应的点为.所以复数的共轭复数对应的点位于第四象限.故选:D【点睛】本题考查复数的运算和根据复数相等求参数,考查复数的概念,属于基础题.7、B【解析】

判断各个选项中的函数和函数是否具有相同的定义域、值域、对应关系,从而得出结论.【详解】由于函数yt,和函数具有相同的定义域、值域、对应关系,故是同一个函数,故B满足条件.由于函数y和函数的定义域不同,故不是同一个函数,故排除D.由于函数,y|x|和函数的值域不同,故不是同一个函数,故排除A,C.故选:A.【点睛】本题主要考查函数的三要素,只有两个函数的定义域、对应关系、值域都相同时,这两个函数才是同一个函数,属于基础题.8、C【解析】

设切点坐标,求导数,写出切线斜率,由切线过点,求出切点坐标,得切线斜率.【详解】直线过定点,设,切点为,,,∴切线方程为,又切点过点,∴,解得.∴.故选:C.【点睛】本题考查导数的几何意义,在未知切点时,一般先设切点坐标,由导数得出切线方程,再结合已知条件求出切点坐标,得切线方程.9、B【解析】

从反面考虑,从名学生中任选名的所有选法中去掉名全是男生的情况,即为所求结果.【详解】从名学生中任选名,有种选法,其中全为男生的有种选法,所以选出名学生,至少有名女生的选法有种.故选:B.【点睛】本题考查组合问题,也可以直接考虑,分类讨论,在出现“至少”的问题时,利用正难则反的方法求解较为简单,考查计算能力,属于基础题.10、A【解析】

根据平面向量的线性运算法则,用、表示出即可.【详解】即:本题正确选项:【点睛】本题考查平面向量的加法、减法和数乘运算,属于基础题.11、A【解析】分析:先证明充分性,两边同时平方即可,再证明必要性,取特值,从而判断出结果。详解:充分性:将两边平方可得:化简可得:则,故满足充分性必要性:,当时,,故不满足必要性条件则是的充分而不必要条件故选点睛:本题考查了充分条件与必要条件的判定,可以根据其定义进行判断,在必要性的判定时采用了取特值的方法,这里也要熟练不等式的运用12、C【解析】作出可行域,如图内部(含两边),作直线,向上平移直线,增加,当过点时,是最大值.故选C.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】

设,可得,.,由余弦定理以及同角三角函数的关系得,则,利用配方法可得结果.【详解】因为在矩形内的射影落在线段上,所以平面垂直于平面,因为,所以平面,,同理,设,则,.在中,,,所以,所以四棱锥的体积.因为,所以当,即时,体积取得最大值,最大值为,故答案为.【点睛】本题主要考查面面垂直的性质,余弦定理的应用以及锥体的体积公式,考查了配方法求最值,属于难题.解决立体几何中的最值问题一般有两种方法:一是几何意义,特别是用空间点线面关系和平面几何的有关结论来解决,非常巧妙;二是将立体几何中最值问题转化为函数问题,然后根据函数的特征选用参数法、配方法、判别式法、三角函数有界法、函数单调性法以及均值不等式法求解.14、【解析】

利用导数的运算法则及导数的公式求出导函数,再令导函数中的,即可求出导数值.【详解】因为函数所以所以在处的导数值是,故答案为.【点睛】本题主要考查导数的运算法则以及基本初等函数的导数,属于简单题.求函数的导数值时,先根据函数的形式选择合适的导数运算法则及导数公式,再求导数值.15、【解析】

根据相关点法,、是两个相关点,找出的坐标与的坐标之间的关系,借助的方程可以求出的方程.【详解】解:设,,由已知有,,即,,因为是圆上的一个动点,所以满足圆的方程,代入,,得,整理得,.故答案为:.【点睛】此题考查了用相关点法求轨迹方程的问题.在求点的轨迹方程时,常设出该点的坐标为,根据已知条件列出关于的方程.还有的题目可以依据圆、椭圆、双曲线、抛物线的定义,求轨迹方程前首先判断出轨迹的形状,进而求解.16、【解析】

利用向量的坐标运算得出关于、、的方程组,解出即可得出的值.【详解】,,且,所以,解得,因此,.故答案为:.【点睛】本题考查空间向量共线的坐标运算,建立方程组求解是解题的关键,考查计算能力,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)(3)见解析【解析】

(1)设A是抛物线上任意一点,先求出|PA|的函数表达式,再求函数的最小值得解;(2)由题意知集合所表示的图形是一个边长为2的正方形和两个半径是1的半圆,再求出面积;(3)将平面内到定圆的距离转化为到圆上动点的距离,再分点现圆的位置关系,结合圆锥曲线的定义即可解决.【详解】(1)设A是抛物线上任意一点,则,因为,所以当时,.点到抛物线的距离.(2)设线段的端点分别为,,以直线为轴,的中点为原点建立直角坐标系,则,,点集由如下曲线围成:,,,,,,,,集合所表示的图形是一个边长为2的正方形和两个半径是1的半圆,其面积为.(3)设动点为,当点在圆内不与圆心重合,连接并延长,交于圆上一点,由题意知,,所以,即的轨迹为一椭圆;如图.如果是点在圆外,由,得,为一定值,即的轨迹为双曲线的一支;当点与圆心重合,要使,则必然在与圆的同心圆,即的轨迹为一圆.【点睛】本题主要考查新定义的理解和应用,考查抛物线中的最值问题,考查轨迹问题,意在考查学生对这些知识的理解掌握水平和分析推理能力.18、(1).(2).【解析】分析:(1)先求出A,B集合的解集,A集合求定义,B集合解不等式即可,然后由交集定义即可得结论;(2)若“”是“”的必要不充分条件,说明且,然后根据集合关系求解.详解:(1),.则(2),因为“”是“”的必要不充分条件,所以且.由,得,解得.经检验,当时,成立,故实数的取值范围是.点睛:考查定义域,解不等式,交集的定义以及必要不充分条件,正确求解集合,缕清集合间的基本关系是解题关键,属于基础题.19、(1);(2)或【解析】

(1)根据双曲线方程和椭圆方程的标准形式,可得同时成立,从而求出;(2)为真命题,为假命题,则、一真一假,再根据集合的交、补运算求得或.【详解】(1)若为真命题,则,解得:或.若为真命题,则,解得:.若和均为真命题时,则的取值范围为.(2)若为真命题,为假命题,则、一真一假.当真假时,解得:或当假真时,,无解综上所述:的取值范围为或.【点睛】本题以椭圆、双曲线方程的标准形式为背景,与简易逻辑知识进行交会,本质考查集合的基本运算.20、(1)30240(2)10080(3)14400(4)30960【解析】

(1)先把甲安排到中间6个位置的一个,再对剩下位置全排列;(2)把甲乙两人捆绑在一起看作一个复合元素,再和另外6人全排列;(3)把甲乙丙3人插入到另外5人排列后所形成的6个空中的三个空,结合公式求解;(4)可采用间接法得到;【详解】(1)假设8个人对应8个空位,甲不站两端,有6个位置可选,则其他7个人对应7个位置,故有:种情况(2)把甲乙两人捆绑在一起看作一个复合元素,再和另外6人全排列,故有种情况;(3)把甲乙丙3人插入到另外5人排列后所形成的6个空中的三个空,故有种情况;(4)利用间接法,用总的情况数减去甲在排头、乙在排尾的情况数,再加上

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论