江西省九江市华林中学2023年高二数学文联考试题含解析_第1页
江西省九江市华林中学2023年高二数学文联考试题含解析_第2页
江西省九江市华林中学2023年高二数学文联考试题含解析_第3页
江西省九江市华林中学2023年高二数学文联考试题含解析_第4页
江西省九江市华林中学2023年高二数学文联考试题含解析_第5页
免费预览已结束,剩余2页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

江西省九江市华林中学2023年高二数学文联考试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.用反证法证明:将9个球分别染成红色或白色,那么无论怎么染,至少有5个球是同色的。其假设应是:(

)A.至少有5个球是同色的

B.至少有5个球不是同色的C.至多有4个球是同色的

D.至少有4个球不是同色的参考答案:C略2.某几何体的三视图如右图,它的体积为(

)A.1

B.2

C.

D.参考答案:D3.已知等差数列的前13项的和为39,则(

A.6

B.12

C.18

D.9参考答案:D4.过点作圆的两条切线,切点分别为,则直线的方程为(

)A. B.C.

D.参考答案:A5.已知f(x)=?cosx,则f(π)+f′()=()A.0 B. C. D.﹣参考答案:D【考点】导数的运算.【分析】求出函数的导数,分别计算f(π)和f′()的值,求和即可.【解答】解:f′(x)=﹣cosx+?(﹣sinx),故f(π)=cosπ=﹣,f′()=﹣cos﹣sin=﹣,故f(π)+f′()=﹣﹣=﹣,故选:D.6.执行如图所示程序,若P=0.9,则输出n值的二进制表示为()A.11(2) B.100(2) C.101(2) D.110(2)参考答案:C【考点】程序框图.【分析】根据已知中的程序框图可得,该程序的功能是计算并输出变量n的值,模拟程序的运行过程,可得答案.【解答】解:第一次执行循环体:n=1,满足继续循环的条件,S=;第二次执行循环体:n=2,满足继续循环的条件,S=;第三次执行循环体:n=3,满足继续循环的条件,S=;第四次执行循环体:n=4,满足继续循环的条件,S=;第五次执行循环体:n=5,不满足继续循环的条件,故输出n值为5,∵5(10)=101(2),故选:C7.设f(x)是R上的任意函数,则下列叙述正确的是()A.f(x)f(﹣x)是奇函数 B.f(x)|f(﹣x)|是奇函数C.f(x)﹣f(﹣x)是偶函数 D.f(x)+f(﹣x)是偶函数参考答案:D【分析】令题中选项分别为F(x),然后根据奇偶函数的定义即可得到答案.【解答】解:A中令F(x)=f(x)f(﹣x),则F(﹣x)=f(﹣x)f(x)=F(x),即函数F(x)=f(x)f(﹣x)为偶函数,B中F(x)=f(x)|f(﹣x)|,F(﹣x)=f(﹣x)|f(x)|,因f(x)为任意函数,故此时F(x)与F(﹣x)的关系不能确定,即函数F(x)=f(x)|f(﹣x)|的奇偶性不确定,C中令F(x)=f(x)﹣f(﹣x),令F(﹣x)=f(﹣x)﹣f(x)=﹣F(x),即函数F(x)=f(x)﹣f(﹣x)为奇函数,D中F(x)=f(x)+f(﹣x),F(﹣x)=f(﹣x)+f(x)=F(x),即函数F(x)=f(x)+f(﹣x)为偶函数,故选D.8.的内角所对的边分别为,,,则()A.

B.

C.或

D.或参考答案:C9.已知两座灯塔A、B与一岛C的距离都等于akm,灯塔A在岛C的北偏东20°,灯塔B在岛C的南偏东40°,则灯塔A与灯塔B的距离为

(

)(A)akm

(B)akm

(C)akm

(D)2akm参考答案:B10.与是定义在上的两个可导函数,若,满足,则与满足

A.

B.为常数函数

C.

D.为常数函数参考答案:B二、填空题:本大题共7小题,每小题4分,共28分11..现将甲、乙、丙、丁四个人安排到座位号分别是1,2,3,4的四个座位上,他们分别有以下要求:甲:我不坐座位号为1和2的座位;乙:我不坐座位号为1和4的座位;丙:我的要求和乙一样;丁:如果乙不坐座位号为2的座位,那么我就不坐座位号为1的座位.那么坐在座位号为3的座位上的是________.参考答案:丙【分析】根据题意,分类讨论,即可得出符合题意的结果,得到答案.【详解】由题意,若乙坐3号位置,则丁坐2号或4号位置,甲、丙两人必定有1人坐1号位置,与题意矛盾,若乙坐2号位置,则丙坐3号位置,甲坐4号位置,丁坐1号位置,符合题意,故答案为:丙.【点睛】本题主要考查了合情推理的应用,其中解答中认真审题,合理分类讨论是解答的关键,着重考查了推理与运算能力,属于基础题.12.圆C1:x2+y2﹣2mx+m2﹣4=0与圆C2:x2+y2+2x﹣4my+4m2﹣8=0相交,则m的取值范围是.参考答案:(0,2)或【考点】圆与圆的位置关系及其判定.【分析】先把圆的方程整理才标准方程,进而可知两圆的圆心坐标和半径,进而根据两圆心的距离小于半径之和,大于圆心距离之差,最后取交集答案可得.【解答】解:整理圆C1得(x﹣m)2+y2=4,整理圆C2得(x+1)2+(y﹣2m)2=9∴C1的圆心为(m,0),半径为2,圆C2:圆心为(﹣1,2m),半径为3,∵两圆相交∴圆心之间的距离小于两圆半径之和,大于两圆半径之故答案为:(0,2)或13.如图是函数的导数的图象,对于下列四个命题:①在上是增函数;②是的极小值点;③在上是增函数,在上是减函数;④是的极小值点.其中正确的命题的序号是.参考答案:略14.某产品的广告费用x与销售额y的统计数据如表广告费用x(万元)4235销售额y(万元)49263954根据上表可得回归方程中的为9.4,据此模型预报广告费用为6万元时销售额为.参考答案:65.5万元【考点】回归分析的初步应用.【分析】首先求出所给数据的平均数,得到样本中心点,根据线性回归直线过样本中心点,求出方程中的一个系数,得到线性回归方程,把自变量为6代入,预报出结果.【解答】解:∵=3.5,=42,∵数据的样本中心点在线性回归直线上,回归方程中的为9.4,∴42=9.4×3.5+a,∴=9.1,∴线性回归方程是y=9.4x+9.1,∴广告费用为6万元时销售额为9.4×6+9.1=65.5,故答案为:65.5万元.15.在平面直角坐标系xOy中,若曲线(a,b为常数)过点,且该曲线在点P处的切线与直线平行,则的值是

.参考答案:-3由题意可得①又,过点的切线的斜率②,由①②解得,所以.16.曲线上在点处的切线方程为

.参考答案:略17.函数的图象在处的切线与直线互相垂直,则a=_____.参考答案:1.【分析】求函数的导数,根据导数的几何意义结合直线垂直的直线斜率的关系建立方程关系进行求解即可.【详解】函数的图象在处的切线与直线垂直,函数的图象在的切线斜率

本题正确结果:1【点睛】本题主要考查直线垂直的应用以及导数的几何意义,根据条件建立方程关系是解决本题的关键.三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.一网站营销部为统计某市网友2017年12月12日在某网店的网购情况,随机抽查了该市60名网友在该网店的网购金额情况,如下表:网购金额(单位:千元)频数频率

网购金额(单位:千元)频数频率[0,0.5)30.05

[1.5,2)150.25[0.5,1)

[2,2.5)180.30[1,1.5)90.15

[2.5,3]若将当日网购金额不小于2千元的网友称为“网购达人”,网购金额小于2千元的网友称为“网购探者”,已知“网购达人”与“网购探者”人数的比例为2:3.(1)确定x,y,p,q的值,并补全频率分布直方图;(2)①.试根据频率分布直方图估算这60名网友当日在该网店网购金额的平均数和中位数;②.若平均数和中位数至少有一个不低于2千元,则该网店当日评为“皇冠店”,试判断该网店当日能否被评为“皇冠店”.参考答案:(1)由题意,得,化简,得,解得,.∴,.

…………4分补全的频率分布直方图如图所示:

分(2)①设这60名网友的网购金额的平均数为.则(千元)又∵,.∴这60名网友的网购金额的中位数为(千元),

…………10分②∵平均数,中位数,∴根据估算判断,该网店当日不能被评为“皇冠店”.

分19.已知函数f(x)=x3﹣2ax2﹣3x.(1)当a=0时,求曲线y=f(x)在点(3,f(3))的切线方程;(2)对一切x∈(0,+∞),af′(x)+4a2x≥lnx﹣3a﹣1恒成立,求实数a的取值范围;(3)当a>0时,试讨论f(x)在(﹣1,1)内的极值点的个数.参考答案:【考点】利用导数研究函数的极值;函数恒成立问题;利用导数研究曲线上某点切线方程.【分析】(Ⅰ)求导数,利用导数的几何意义,求出切线的斜率,即可求曲线y=f(x)在点(3,f(3))的切线方程;(Ⅱ)由题意:2ax2+1≥lnx,即,求出右边的最大值,即可求实数a的取值范围;(Ⅲ)分类讨论,利用极值的定义,即可讨论f(x)在(﹣1,1)内的极值点的个数.【解答】解:(Ⅰ)由题意知,所以f′(x)=2x2﹣3又f(3)=9,f′(3)=15所以曲线y=f(x)在点(3,f(3))的切线方程为15x﹣y﹣36=0…(Ⅱ)由题意:2ax2+1≥lnx,即设,则当时,g'(x)>0;当时,g′(x)<0所以当时,g(x)取得最大值故实数a的取值范围为.…(Ⅲ)f′(x)=2x2﹣4ax﹣3,,①当时,∵∴存在x0∈(﹣1,1),使得f′(x0)=0因为f′(x)=2x2﹣4ax﹣3开口向上,所以在(﹣1,x0)内f′(x)>0,在(x0,1)内f′(x)<0即f(x)在(﹣1,x0)内是增函数,f(x)在(x0,1)内是减函数故时,f(x)在(﹣1,1)内有且只有一个极值点,且是极大值点.…②当时,因又因为f′(x)=2x2﹣4ax﹣3开口向上所以在(﹣1,1)内f′(x)<0,则f(x)在(﹣1,1)内为减函数,故没有极值点…综上可知:当,f(x)在(﹣1,1)内的极值点的个数为1;当时,f(x)在(﹣1,1)内的极值点的个数为0.…20.(本小题满分12分)如图,PDCE为矩形,ABCD为梯形,平面PDCE⊥平面ABCD,∠BAD=∠ADC=90°,AB=AD=CD=1,PD=。(1)若M为PA中点,求证:AC∥平面MDE;(2)求直线PA与平面PBC所成角的正弦值;(3)在线段PC上是否存在一点Q(除去端点),使得平面QAD与平面PBC所成锐二面角的大小为?参考答案:(1)在矩形中,连结交于,则点为的中点.只要证即可;(2)以为原点,所在的直线分别为轴,建立空间直角坐标系,设直线与平面所成角为,先求平面的法向量,再利用求值;(III)假设存在满足已知条件的,由,得.求平面和平面的法向量,利用空间二面角的夹角公式列方程组,若方程组有解则肯定回答,即存在满足已知条件的;否则则否定回答,即不存在满足已知条件的.试题解析:(I)证明:在矩形中,连结交于,则点为的中点.在中,点为的中点,点为的中点,.又平面平面平面

由则.由平面平面且平面平面,得平面又矩形中以为原点,所在的直线分别为轴,建立空间直角坐标系,则设平面的法向量为可取.设直线与平面所成角为,则.

(3)设,得.设平面的法向量为则由得

由平面与平面所成的锐二面角为得,或(舍).故在上存在满足条件.

21.已知抛物线C;y2=2px(p>0)过点A(1,﹣2);(1)求抛物线C的方程,并求其准线方程;(2)是否存在平行于OA(O为坐标原点)的直线l,使直线l与抛物线C有公共点,直线OA与l的距离等于?若存在,求出直线l的方程,说明理由.参考答案:【考点】抛物线的简单性质.【分析】(1)将(1,﹣2)代入抛物线方程求得p,则抛物线方程可得,进而根据抛物线的性质求得其准线方程.(2)先假设存在符合题意的直线,设出其方程,与抛物线方程联立,根据直线与抛物线方程有公共点,求得t的范围,利用直线AO与L的距离,求得t,则直线l的方程可得.【解答】解:(1)将(1,﹣2)代入y2=2px,得(﹣2)2=2p?1,所以p=2.故所求的抛物线C的方程为y2=4x,其准线方程为x=﹣1.(2)假设存在符合题意的直线l,其方程为y=﹣2x+t,代入抛物线方程得y2+2y﹣2t=0.因为直线l与抛物线C有公共点,所以△=4+8t≥0,解得t≥﹣.另一方面,由直线OA到l的距离d=可得=,解得t=±1.因为﹣1

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论