版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
§8.3.最短路问题一、
引例单行线交通网:v1到v8使总费用最小的旅行路线。(下页图)最短路问题的一般描述:对D=(V,A),a=(vi,vj),w(a)=wij,P是vs到vt的路,定义路P的权是P中所有弧的权的和,记为w(P),则最短路问题为:路P0的权称为从vs到vt的距离,记为:d(vs,vt)V1V6V3V4V5V2V7V8V9622410341026613213
最短路问题就是从给定的网络图中找出一点到各点或任意两点之间距离最短的一条路.
有些问题,如选址、管道铺设时的选线、设备更新、投资、某些整数规划和动态规划的问题,也可以归结为求最短路的问题。因此这类问题在生产实际中得到广泛应用。例8.4渡河游戏 一老汉带了一只狼、一只羊、一棵白菜想要从南岸过河到北岸,河上只有一条独木舟,每次除了人以外,只能带一样东西;另外,如果人不在,狼就要吃羊,羊就要吃白菜,问应该怎样安排渡河,才能做到既把所有东西都运过河去,并且在河上来回次数最少?这个问题就可以用求最短路方法解决。定义:1)人—M(Man),狼—W(Wolf),羊—G(Goat),草—H(Hay)2)点——vi
表示河岸的状态3)边——ek
表示由状态vi
经一次渡河到状
态vj
4)权——边ek
上的权定为1我们可以得到下面的加权有向图状态说明:v1,u1=(M,W,G,H);v2,u2=(M,W,G);v3,u3=(M,W,H);v4,u4=(M,G,H);v5,u5=(M,G)此游戏转化为在下面的二部图中求从v1
到u1
的最短路问题。v1v2v3v4v5u5u4u3u2u1求最短路有两种算法:
狄克斯屈拉(Dijkstra)标号算法逐次逼近算法
Dijkstra算法:适用于有向图,wij≥0基本原理
如:假定v1→v2→v3→v4是v1→v4的最短路,则v1→v2→v3一定是v1→v3的最短路,v2→v3→v4也一定是v2→v4的最短路。v1v2v3v4v5
Dijkstra算法基本思想:采用标号法:P标号和T标号P标号:已确定出最短路的节点(永久性标号)。T标号:未确定出最短路的节点,但表示其距离的上限(试探性标号)。算法的每一步都把某一点的T标号改为P标号直至改完为止.Si:第i步时P标号节点的集合。λ(v):最短路中前一个节点的编号。初始值:
Dijkstra算法基本步骤
Step1:给vs以P标号,P(vs)=0,其余各点均给T标号,T(vi)=+∞
Step2:若vj点为刚得到P标号的点,考虑这样的点vj,(vi,vj)∈E,且vj为T标号.
Step3:对vj的T标号进行如下更改:T(vj)=min[T(vj),P(vi)+lij]
Step4:比较所有具有T标号的点,把最小者改为P标号.
当存在两个以上最小值时,可同时改为P标号.
若全部改为P标号,则停止.否则转回(2).V1V6V3V4V5V2V7V8V9622410341026613213V1V6V3V4V5V2V7V8V9622410341026613213
i=0
,s0={v1},P(v1)=0,
λ(v1)=0,
k=1T(v2)=+∞,λ(v2
)=MT(v3)=+∞,λ
(v3
)=M
。。。。。。
T(v9)=+∞,λ
(v9
)=MV1V6V3V4V5V2V7V8V9622410341026613213P(v1)=0,λ(v1)=0T(v2)=+,λ(v2)=MT(v3)=+,λ(v3)=MT(v4)=+,λ(v4)=MT(v6)=+,λ(v6)=MT(v7)=+,λ(v7)=MT(v5)=+,λ(v5)=MT(v8)=+,λ(v8)=MT(v9)=+,λ(v9)=+
V1V6V3V4V5V2V7V8V9622410341026613213P(v1)=0,λ(v1)=0T(v2)=+,λ(v2)=MT(v3)=+,λ(v3)=MT(v4)=+,λ(v4)=MT(v6)=+,λ(v6)=MT(v7)=+,λ(v7)=MT(v5)=+,λ(v5)=MT(v8)=+,λ(v8)=MT(v9)=+,λ(v9)=+
V1V6V3V4V5V2V7V8V9622410341026613213P(v1)=0,λ(v1)=0T(v2)=+,λ(v2)=MT(v3)=+,λ(v3)=MT(v4)=+,λ(v4)=MT(v6)=+,l(v6)=MT(v7)=+,l(v7)=MT(v5)=+,λ(v5)=MT(v8)=+,l(v8)=MT(v9)=+,λ(v9)=+
②(v1,,,v2):P(v1)+l12=0+6=6<T(v2)
修改T(v2)=6,λ(v2)=1
(v1,,,v3):P(v1)+l13=0+3=3<T(v3)T(v3)=3,λ(v3)=1
(v1,,,v4):P(v1)+l14=0+1=1<T(v4)T(v4)=1,λ(v4)=1V1V6V3V4V5V2V7V8V9622410341026613213P(v1)=0,λ(v1)=0T(v2)=+,l(v2)=MT(v3)=+,l(v3)=MT(v4)=+,l(v4)=MT(v6)=+,l(v6)=MT(v7)=+,l(v7)=MT(v5)=+,λ(v5)=MT(v8)=+,l(v8)=MT(v9)=+,λ(v9)=+
T(v2)=6,λ(v2)=1T(v4)=1,λ(v4)=1T(v3)=3,λ(v3)=1②(v1,,,v2):P(v1)+l12=0+6=6<T(v2)T(v2)=6,λ(v2)=1
(v1,,,v3):P(v1)+l13=0+3=3<T(v3)T(v3)=3,λ(v3)=1
(v1,,,v4):P(v1)+l14=0+1=1<T(v4)T(v4)=1,λ(v4)=1V1V6V3V4V5V2V7V8V9622410341026613213P(v1)=0,λ(v1)=0T(v2)=6,λ(v2)=1T(v4)=1,λ(v4)=1T(v3)=3,λ(v3)=1T(v6)=+,λ(v6)=MT(v7)=+,λ(v7)=MT(v5)=+,λ(v5)=MT(v8)=+,l(v8)=MT(v9)=+,λ(v9)=+
min{T(v2),T(v3),T(v4),T(v5),T(v6),T(v7),T(v8),T(v9),}=T(v4),令P(v4)=1,k=4
i=1,S1={v1,v4}V1V6V3V4V5V2V7V8V9622410341026613213P(v1)=0,λ(v1)=0T(v2)=6,λ(v2)=1P(v4)=1,
λ(v4)=1T(v3)=3,λ(v3)=1T(v6)=+,λ(v6)=MT(v7)=+,λ(v7)=MT(v5)=+,λ(v5)=MT(v8)=+,l(v8)=MT(v9)=+,λ(v9)=+
min{T(v2),T(v3),T(v4),T(v5),T(v6),T(v7),T(v8),T(v9),}=T(v4),令P(v4)=1,k=4i=1,S1={v1,v4}V1V6V3V4V5V2V7V8V9622410341026613213P(v1)=0,l(v1)=0T(v2)=6,l(v2)=1P(v4)=1,
l(v4)=1
T(v3)=3,l(v3)=1T(v6)=+,l(v6)=MT(v7)=+,l(v7)=MT(v5)=+,l(v5)=MT(v8)=+,l(v8)=MT(v9)=+,l(v9)=+
V1V6V3V4V5V2V7V8V9622410341026613213P(v1)=0,l(v1)=0T(v2)=6,l(v2)=1P(v4)=1,
l(v4)=1
T(v3)=3,l(v3)=1T(v6)=+,l(v6)=MT(v7)=+,l(v7)=MT(v5)=+,l(v5)=MT(v8)=+,l(v8)=MT(v9)=+,l(v9)=+
(v4,v6):P(v4)+l46=1+10=11<T(v6)
修改T(v6)=11,λ(v6)=4T(v6)=11,l(v6)=4V1V6V3V4V5V2V7V8V9622410341026613213P(v1)=0,l(v1)=0T(v2)=6,l(v2)=1P(v4)=1,
l(v4)=1
T(v3)=3,l(v3)=1T(v6)=11,l(v6)=4T(v7)=+,l(v7)=MT(v5)=+,l(v5)=MT(v8)=+,l(v8)=MT(v9)=+,l(v9)=+
(v4,v6):P(v4)+l46=1+10=11<T(v6)
修改T(v6)=11,λ(v6)=4V1V6V3V4V5V2V7V8V9622410341026613213P(v1)=0,l(v1)=0T(v2)=6,l(v2)=1P(v4)=1,
l(v4)=1T(v3)=3,l(v3)=1T(v6)=11,l(v6)=4T(v7)=+,l(v7)=MT(v5)=+,l(v5)=MT(v8)=+,l(v8)=MT(v9)=+,l(v9)=+
min{T(v2),T(v3),T(v5),T(v6),T(v7),T(v8),T(v9)}=T(v3),令P(v3)=3,k=3
i=2,S2={v1,v4,v3}V1V6V3V4V5V2V7V8V9622410341026613213P(v1)=0,l(v1)=0T(v2)=6,l(v2)=1P(v4)=1,
l(v4)=1
P(v3)=3,
l(v3)=1
T(v6)=11,l(v6)=4T(v7)=+,l(v7)=MT(v5)=+,l(v5)=MT(v8)=+,l(v8)=MT(v9)=+,l(v9)=+
min{T(v2),T(v3),T(v5),T(v6),T(v7),T(v8),T(v9)=T(v3),i=2,S2={v1,v4,v3},P(v3)=3,k=3min{T(v2),T(v3),T(v5),T(v6),T(v7),T(v8),T(v9)}=T(v3),令P(v3)=3,k=3
i=2,S2={v1,v4,v3}V1V6V3V4V5V2V7V8V9622410341026613213P(v1)=0,l(v1)=0T(v2)=6,l(v2)=1P(v4)=1,
l(v4)=1
P(v3)=3,
l(v3)=1
T(v6)=11,l(v6)=4T(v7)=+,l(v7)=MT(v5)=+,l(v5)=MT(v8)=+,l(v8)=MT(v9)=+,l(v9)=+
T(v2)=5,l(v2)=3(v3,v2):P(v3)+l32=3+2=5<T(v2)=6
修改T(v2)=5,λ(v2)=3V1V6V3V4V5V2V7V8V9622410341026613213P(v1)=0,l(v1)=0T(v2)=5,l(v2)=3P(v4)=1,
l(v4)=1
P(v3)=3,
l(v3)=1
T(v6)=11,l(v6)=4T(v7)=+,l(v7)=MT(v5)=+,l(v5)=MT(v8)=+,l(v8)=MT(v9)=+,l(v9)=+
(v3,v2):P(v3)+l32=3+2=5<T(v2)=6T(v2)=5,λ(v2)=3V1V6V3V4V5V2V7V8V9622410341026613213P(v1)=0,l(v1)=0T(v2)=5,l(v2)=3P(v4)=1,
l(v4)=1
P(v3)=3,
l(v3)=1
T(v6)=11,l(v6)=4T(v7)=+,l(v7)=MT(v5)=+,l(v5)=MT(v8)=+,l(v8)=MT(v9)=+,l(v9)=+
min{T(v2),T(v5),T(v6),T(v7),T(v8),T(v9)}=T(v2),令P(v2)=5,k=2
i=3,S2={v1,v4,v3,v2}V1V6V3V4V5V2V7V8V9622410341026613213P(v1)=0,l(v1)=0P(v2)=5,
l(v2)=3
P(v4)=1,
l(v4)=1
P(v3)=3,
l(v3)=1
T(v6)=11,l(v6)=4T(v7)=+,l(v7)=MT(v5)=+,l(v5)=MT(v8)=+,l(v8)=MT(v9)=+,l(v9)=+
min{T(v2),T(v5),T(v6),T(v7),T(v8),T(v9)}=T(v2),i=3,S2={v1,v4,v3,v2},P(v2)=5,k=2min{T(v2),T(v5),T(v6),T(v7),T(v8),T(v9)}=T(v2),令P(v2)=5,k=2
i=3,S2={v1,v4,v3,v2}V1V6V3V4V5V2V7V8V9622410341026613213P(v1)=0,l(v1)=0P(v2)=5,l(v2)=3P(v4)=1,
l(v4)=1
P(v3)=3,
l(v3)=1
T(v6)=11,l(v6)=4T(v7)=+,l(v7)=MT(v5)=+,l(v5)=MT(v8)=+,l(v8)=MT(v9)=+,l(v9)=+
T(v5)=6,l(v5)=2(v2,v5):P(v2)+l25=5+1=6<T(v5)
修改T(v5)=6,λ(v5)=2V1V6V3V4V5V2V7V8V9622410341026613213P(v1)=0,l(v1)=0P(v2)=5,l(v2)=3P(v4)=1,
l(v4)=1
P(v3)=3,
l(v3)=1T(v6)=11,l(v6)=4T(v7)=+,l(v7)=MT(v5)=6,l(v5)=2T(v8)=+,l(v8)=MT(v9)=+,l(v9)=+
(v2,v5):P(v2)+l25=5+1=6<T(v5)T(v5)=6,λ(v5)=2V1V6V3V4V5V2V7V8V9622410341026613213P(v1)=0,l(v1)=0P(v2)=5,l(v2)=3P(v4)=1,
l(v4)=1
P(v3)=3,
l(v3)=1T(v6)=11,l(v6)=4T(v7)=+,l(v7)=MT(v5)=6,l(v5)=2T(v8)=+,l(v8)=MT(v9)=+,l(v9)=+
min{T(v5),T(v6),T(v7),T(v8),T(v9)}=T(v2),
令P(v5)=6,k=5
i=4,S4={v1,v4,v3,v2,v5}V1V6V3V4V5V2V7V8V9622410341026613213P(v1)=0,l(v1)=0P(v2)=5,l(v2)=3P(v4)=1,
l(v4)=1
P(v3)=3,
l(v3)=1
T(v6)=11,l(v6)=4T(v7)=+,l(v7)=MP(v5)=6,l(v5)=2T(v8)=+,l(v8)=MT(v9)=+,l(v9)=+
min{T(v5),T(v6),T(v7),T(v8),T(v9)}=T(v2),i=4,S4={v1,v4,v3,v2,v5},P(v5)=6,k=5min{T(v5),T(v6),T(v7),T(v8),T(v9)}=T(v2),
令P(v5)=6,k=5
i=4,S4={v1,v4,v3,v2,v5}V1V6V3V4V5V2V7V8V9622410341026613213P(v1)=0,l(v1)=0P(v2)=5,l(v2)=3P(v4)=1,
l(v4)=1P(v3)=3,
l(v3)=1T(v6)=11,l(v6)=4T(v7)=+,l(v7)=MP(v5)=6,l(v5)=2T(v8)=+,l(v8)=MT(v9)=+,l(v9)=+
T(v6)=10,l(v6)=5T(v7)=9,l(v7)=5T(v8)=12,l(v8)=5②(v5,,,v6):P(v5)+l56=6+4=10<T(v6)
修改T(v10)=10,λ(v6)=5
(v5,,,v7):P(v5)+l57=6+3=9<T(v7)T(v7)=9,λ(v7)=5
(v5,,v8):P(v5)+l58=6+6=12<T(v8)T(v8)=12,λ(v8)=5V1V6V3V4V5V2V7V8V9622410341026613213P(v1)=0,l(v1)=0P(v2)=5,l(v2)=3P(v4)=1,
l(v4)=1
P(v3)=3,
l(v3)=1
T(v6)=10,l(v6)=5T(v7)=9,l(v7)=5P(v5)=6,l(v5)=2T(v8)=12,l(v8)=5T(v9)=+,l(v9)=+
②(v5,,,v6):P(v5)+l56=6+4=10<T(v6)
修改T(v10)=10,λ(v6)=5
(v5,,,v7):P(v5)+l57=6+3=9<T(v7)T(v7)=9,λ(v7)=5
(v5,,v8):P(v5)+l58=6+6=12<T(v8)T(v8)=12,λ(v8)=5V1V6V3V4V5V2V7V8V9622410341026613213P(v1)=0,l(v1)=0P(v2)=5,l(v2)=3P(v4)=1,
l(v4)=1
P(v3)=3,
l(v3)=1
T(v6)=10,l(v6)=5T(v7)=9,l(v7)=5P(v5)=6,l(v5)=2T(v8)=12,l(v8)=5T(v9)=+,l(v9)=+
min{T(v6),T(v7),T(v8),T(v9)}=T(v7)
令P(v7)=9,k=7
i=5,S5={v1,v4,v3,v2,v5,v7}V1V6V3V4V5V2V7V8V9622410341026613213P(v1)=0,l(v1)=0P(v2)=5,l(v2)=3P(v4)=1,
l(v4)=1
P(v3)=3,
l(v3)=1
T(v6)=10,l(v6)=5P(v7)=9,
l(v7)=5
P(v5)=6,l(v5)=2T(v8)=12,l(v8)=5T(v9)=+,l(v9)=+
min{T(v6),T(v7),T(v8),T(v9)}=T(v7)
令P(v7)=9,k=7
i=5,S5={v1,v4,v3,v2,v5,v7}V1V6V3V4V5V2V7V8V9622410341026613213P(v1)=0,l(v1)=0P(v2)=5,l(v2)=3P(v4)=1,
l(v4)=1
P(v3)=3,
l(v3)=1
T(v6)=10,l(v6)=5P(v7)=9,
l(v7)=5
P(v5)=6,l(v5)=2T(v8)=12,l(v8)=5T(v9)=+,l(v9)=+
(v7,v8):P(v7)+l78=9+4=13>T(v8)T(v8),λ(v5)不变V1V6V3V4V5V2V7V8V9622410341026613213P(v1)=0,l(v1)=0P(v2)=5,l(v2)=3P(v4)=1,
l(v4)=1
P(v3)=3,
l(v3)=1
T(v6)=10,l(v6)=5P(v7)=9,
l(v7)=5
P(v5)=6,l(v5)=2T(v8)=12,l(v8)=5T(v9)=+,l(v9)=+
(v7,v8):P(v7)+l78=9+4=13>T(v8)T(v8),λ(v5)不变V1V6V3V4V5V2V7V8V9622410341026613213P(v1)=0,l(v1)=0P(v2)=5,l(v2)=3P(v4)=1,
l(v4)=1
P(v3)=3,
l(v3)=1
T(v6)=10,l(v6)=5P(v7)=9,
l(v7)=5
P(v5)=6,l(v5)=2T(v8)=12,l(v8)=5T(v9)=+,l(v9)=+
P(v6)=10,l(v6)=5min{T(v6),T(v8),T(v9)}=T(v6)
令P(v6)=10,k=6
i=6,S6={v1,v4,v3,v2,v5,v7,v6}V1V6V3V4V5V2V7V8V9622410341026613213P(v1)=0,l(v1)=0P(v2)=5,l(v2)=3P(v4)=1,
l(v4)=1P(v3)=3,
l(v3)=1
P(v6)=10,l(v6)=5P(v7)=9,
l(v7)=5
P(v5)=6,l(v5)=2T(v8)=12,l(v8)=5T(v9)=+,l(v9)=+
min{T(v6),T(v8),T(v9)}=T(v6)
令P(v6)=10,k=6
i=6,S6={v1,v4,v3,v2,v5,v7,v6}V1V6V3V4V5V2V7V8V9622410341026613213P(v1)=0,l(v1)=0P(v2)=5,l(v2)=3P(v4)=1,
l(v4)=1
P(v3)=3,
l(v3)=1
P(v6)=10,l(v6)=5P(v7)=9,
l(v7)=5
P(v5)=6,l(v5)=2T(v8)=12,l(v8)=5T(v9)=+,l(v9)=+
v6无指向不属于S6的点,转向③V1V6V3V4V5V2V7V8V9622410341026613213P(v1)=0,l(v1)=0P(v2)=5,l(v2)=3P(v4)=1,
l(v4)=1
P(v3)=3,l(v3)=1P(v6)=10,l(v6)=5P(v7)=9,
l(v7)=5
P(v5)=6,l(v5)=2P(v8)=12,l(v8)=5T(v9)=+,l(v9)=+
min{T(v8),T(v9)}=T(v8)
令P(v8)=12,k=8
i=7,S7={v1,v4,v3,v2,v5,v7,v6,v8}V1V6V3V4V5V2V7V8V9622410341026613213P(v1)=0,l(v1)=0P(v2)=5,l(v2)=3P(v4)=1,
l(v4)=1
P(v3)=3,
l(v3)=1P(v6)=10,l(v6)=5P(v7)=9,
l(v7)=5
P(v5)=6,l(v5)=2P(v8)=12,
l(v8)=5
T(v9)=+,l(v9)=+
v8无指向不属于S7的点,转向③
min{T(v9)}=+∞T(v9)=+∞算法终止
总结:
算法步骤:例8.5求下图v1到v7的最短路长及最短路线①②③④⑤⑥⑦862523534210570862254411147510711P标号T标号9v1到v7的最短路长及最短路线如图所示:①②③④⑤⑥⑦86252353421057v7已标号,计算结束。从v1到v7的最短路长是11,最短路线:v1→v4→v6
→v702411从上例知,只要某点已标号,说明已找到起点vs到该点的最短路线及最短距离,因此可以将每个点标号,求出vs到任意点的最短路线,如果某个点vj不能标号,说明vs不可达vj
。注:无向图最短路的求法只将上述步骤2将弧改
成边即可。例8.6求下图v1到各点的最短距离及最短路线。①②③④⑤⑥⑦⑧4526178393261216180452231039612641166188122482418v1到各点的最短距离及最短路线如图所示:①②③④⑤⑥⑦⑧45261783932612161802618所有点都已标号,点上的标号就是v1到该点的最短距离,最短路线就是红色的链。237184566134105275934682练习1:
求从1到8的最短路径237184566134105275934682X={1},w1=0min{c12,c14,c16}=min{0+2,0+1,0+3}=min{2,1,3}=1X={1,4},p4=1p4=1p1=0237184566134105275934682X={1,4}min{c12,c16,c42,c47}=min{0+2,0+3,1+10,1+2}=min{2,3,11,3}=2X={1,2,4},p2=2p1=0p4=1p2=2237184566134105275934682X={1,2,4}min{c16,c23,c25,c47}=min{0+3,2+6,2+5,1+2}=min{3,8,7,3}=3X={1,2,4,6},p6=3p2=2p4=1p1=0p6=3237184566134105275934682X={1,2,4,6}min{c23,c25,c47,c67}=min{2+6,2+5,1+2,3+4}=min{8,7,3,7}=3X={1,2,4,6,7},p7=3p2=2p4=1p1=0p6=3p7=3237184566134105275934682X={1,2,4,6,7}min{c23,c25,c75,c78}=min{2+6,2+5,3+3,3+8}=min{8,7,6,11}=6X={1,2,4,5,6,7},p5=6p2=2p4=1p1=0p6=3p7=3p5=6237184566134105275934682X={1,2,4,6,7}min{c23,c53,c58,c78}=min{2+6,6+9,6+4,3
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 对数函数及性质课件
- 2024年版道路桥梁建设项目招标合同版B版
- 2024年智能交通管理系统开发与应用协议
- 2024年土地置换与乡村旅游资源开发合同3篇
- 五年级上册第五单元综合性学习课件
- 2025年柳州货运从业资格证怎么考试
- 2025年广州货运从业资格证模拟考试试题
- 2025年鹤岗货运从业资格证模拟考
- 2025年陕西从业资格货运资格考试题库及答案
- 2025年南宁年货运资格证考试题
- 《地震产生探究》(教案) 小学科学校本课程
- 2024年河南省高考对口升学语文英语试题
- 《第2课时 光合作用与能量转化》参考课件1
- 2023年江苏常州中考满分作文《方寸之间天地大》4
- 2024年初三数学竞赛考试试题
- 房地产营销工作排期【倒排计划表】
- 某大学中西医临床(专升本)学士学位考试复习题
- CMOS数字集成电路智慧树知到期末考试答案章节答案2024年宁波大学
- QB∕T 4728-2014 封闭式鱼线轮
- 考前减压班会课件
- 福建省三明市三元区2022-2023学年八年级上学期期末物理试卷(沪科版)
评论
0/150
提交评论