




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
A.{-1,-2}B.{-1,2}C.{-2,4}D.{4}母题2.已知集合A={x∣y=lg(x-x2({,B={x∣x2-cx<0,c>0{,若A∩B=A,则实数c的【解析】A={x∣y=lg(x-x2({={x∣x-x2>0{={x∣0<x<1},B={x∣x2-cx<0,c>0{={x∣0<x<c},若A∩B=A,则c≥1,母题3.已知全集U=A,A={1,2,3,4},B={x∣(x+1((x-3(>0,x∈Z{A.2B.4UB={x∣-1≤x≤3,x∈A}={1,2,3};UB(={1,2,3};UB(的子集个数为:C+C+C+C=8.母题4.已知集合A={x∣x2-3x-4>0{,B={x∣-1≤x≤3},则(∁RA(∩B=()A.(-1,3)B.[-1,3[C.[-1,4[D.(-1,4)【解析】A={x∣x2-3x-4>0{={x∣x>4或x<-1},B={x∣-1≤x≤3},RA={x∣-1≤x≤4},则(∁RA(∩B={x∣-1≤x≤3}=[-1,3[,母题5.已知集合M={x∣3x2-5x-2≤0{,N=[m,m+1[,若M∪N=M,则m的取值范围是()B.(-≤x≤2r{(,由M∪N=M可得N⊆M,则,解得-≤m≤1,母题6.已知集合A={x∣-1≤x<2},B={x∣x<a},若A∩B≠⌀,则实数a的取值范围为()A.-1<a≤2B.a>-1C.a>-2D.a≥2【解析】∵A={x∣-1≤x<2},B={x∣x<a},且A∩B≠⌀,∴a>-1.母题7.设θ∈(0,π(,则“θ<”是“sinθ<”的()【解析】θ∈(0,π(时,若θ<,则sinθ<,充分性成立;若sinθ<,则0<θ<或<θ<π,必要性不成立;所以“θ<”是“sinθ<”的充分不必要条件.D.既不充分也不必要条件【解析】条件p:|x+1|>2,解得x>1,或x<-3.一p:-3≤x≤1.2<x<3.¬q:x≤2,或x≥3.则¬q是¬p的必要不充分条件.母题10.设命题p:|4x-3|≤1,命题q:x2-(2a+1(x+a(a+1(≤0,若¬p是¬q的必要不充分2-(2a+1(x+a(a+1(≤0,解得:a≤x≤a+1.且等号不能同时成立.解得0≤a≤.母题11.已知方程x2+(m-3(x+m=0,在下列条件下,求m得范围:【解析】对于方程x2+(m-3(x+m=0,令f(x(=x2+(m-3(x+m,(1)方程有两个正根,等价于△=(m-3(2-4m=(m-1((m-9(≥0,且,求得0<m≤1;(2)方程有两个负根等价于△=(m-3(2-4m=(m-1((m-9(≥0且,求得m≥9;求得<m≤1;<m≤1;求得0<m<;求得<m<0.母题12.对于任意实数x,不等式(a-2(x2-2(a-2(x-4<0恒成立,则实数a的取值范围是()则有-2.[2-4×a-2.×-4<0,解得-2<a<2.母题13.若关于x的不等式2x2-8x-4+a≤0在1≤x≤3内有解,则实数a的取值范围是【解析】原不等式2x2-8x-4+a≤0在1≤x≤3内有解等价于a≤-2x2+8x+4在1≤x≤3内有解,设函数f(x(=-2x2+8x+4,x∈[1,3[,所以原问题等价于a≤f(x(max又当x=2时,f(x(max=12,所以a≤12.x+2y=1,则x+y的取值范围是()x+2y≥22x⋅2y=22x+y,所以2x+y≤,即x+y≤-2,当且仅当2x=2y=,即x=y=-1时取“=”,所以x+y的取值范围是(-∞,-2].母题15.已知正数x,y满足xy=x+y+3,(1)求x+y的最小值;∴x+y≥2、xy,则xy≤2,∴x+y+3=xy≤2,即(x+y(2-4(x+y(-12≥0,化简可得,(x+y+2((x+y-6(≥0,∴x+y≥6,当且仅当x=y=3时取等号,可得xy=x+y+3≥2xy+3,即xy-2xy-3≥0,可以变形为(xy-3((xy+1(≥0,当且仅当x=y=3时取等号,母题16.已知实数x>0,y>0,x+3y=1,则+的最小值为【解析】+=(x+3y(+=4++≥4+2、3母题17.设x>0,y>0,+2y=2,则x+的最小值为()A.B.2A.B.22C.+2D.3因为x>0,y>0,所以x+=(x++y(=+xy++1=+xy+≥+2xy⋅=+2×O2=+2.2A.4B.42C.42+1D.22+1【解析】=+=+=1++≥1+2⋅=2、2+1,A.24B.25C.6+42D.62-3+=+(x+y(=13++≥13+2×=25,2+xy+3y2=3,则x+y的最大值为()3+33A.3+33A.C.B.D.【解析】令t=x+y,则x=t-y,方程x2+xy+3y2=3可化为(t-y)2+(t-y(y+3y2-3=0,整理得3y2-ty+t2-3=0,则满足Δ=(-t)2-12(t2-3(≥0,解得t2≤,所以-6≤t≤6,即x+y≤6,所以x+y的最大值为6 2+xy-y2=1,得(2x-y)(x+y)=1,设2x-y=t,x+y=,其中t≠0. A.6B.4C.22D.2(1)f(x(=x2+2x-1,g(x(=t2+2t-1;(3)f(x(=x⋅x+1,g(x(=x2+x;f(x(=|3-x|+1=,显然f(x(=g(x(,是同一函数.母题24.函数f(x(=+(x-1(0的定义域为.2>0,∴函数f(x(的定义域为{x∣-3<x<2且x≠1}.【答案】{x∣-3<x<2且x≠1}.母题25.已知函数y=x2+2ax+1的2+2ax+1的定义域为R,故△=4a2-4≤0,解得:-1≤a≤1,母题26.已知函数f(x(的定义域为(-1,1),则函数g(x(=+f(x-1(的定义域为()解得:0<x<2,(1)已知函数y=f(x(是一次函数,且[f(x([2-3f(x(=4x2-10x+4,求f(x(;(2)已知f(x(是二次函数且满足f(0(=1,f(x+1(-f(x(=2x.求f(x(;(3)已知f(2x+1(=4x2+8x+3,求f(x(;(4)已知f(x+=x2+-3,求f(x(;(5)已知f(x(-2=3x+2,求f(x(;(6)已知对任意实数x、y都有f(x+y(-2f(y(=x2+2xy-y2+3x-3y,求f(x(;(7)=,求f(x(的解析式.(8)若f(x(是定义在R上的奇函数,当x<0时,f(x(=x(2-x(,求函数f(x(的解析式.设f(x(=ax+b(a≠0(,因为[f(x([2-3f(x(=4x2-10x+4,所以(ax+b(2-3(ax+b(=4x2-10x+4,故a2x2+(2ab-3a(x+b2-3b=4x2-10x+4,a2=4则{2ab-3a=-10,,解得a=-2,b=4或a=2,b=-1,b2-3ba2=4所以f(x(=-2x+4或f(x(=2x-1.(2)设二次函数的解析式为f(x(=ax2+bx+c(a≠0(,由f(0(=1,可得c=1,故f(x(=ax2+bx+1,因为f(x+1(-f(x(=2x,则a(x+1(2+b(x+1(+1-(ax2+bx+1(=2x,即2ax+a+b=2x,所以f(x(=x2-x+1.(3)设t=2x+1,则x=,则f(t(=4×2+8×+3=t2+2t,所以f(x(=x2+2x.(4)因为f(x+=x2+-3=(x+2-5,所以f(x(=x2-5(x≤-2或x≥2(.(5)由f(x(-2=3x+2①,由①②可得,f(x(=-x--2.(6)令x=y=0,可得f(0(=2f(0(,则f(0(=0,令y=0,可得f(x(=f(0(+x2+3x,即f(x(=x2+3x.所以f(t(=,故f(x(=(x≠-1(.当x>0时,-x<0,∴f(-x(=-x(2+x(,∴-f(x(=f(-x(=-x(2+x(,解得f(x(=x(2+x(母题28.已知函数f(x(=、x2-4x-5,则该函数的单调递增区间为2-4x-5≥0,解得x≤-1或x≥5,()函数t=x2-4x-5的图象是开口向上的抛物线,对称轴方程为x=2,∴函数f(x(=、x2-4x-5的单调递增区间为[5,+∞).母题29.已知f(x(是奇函数,且当x<0时,f(x(=-eax.若f(ln2(=8,则a=()A.3B.-C.-3D.-【解析】∵f(x(是奇函数,且当x<0时,f(x(=-eax.若f(ln2(=8,∴f(-ln2(=-f(ln2(=-8,则-e-aln2=-8,得e-aln2=8,得ln8=-aln2,即3ln2=-aln2,得-a=3,得a=-3,母题30.若函数f(x(=sinx⋅ln(ax+、1+9x2(的图象关于y轴对称,则实数a的值为()则f(-x(=f(x(恒成立,∴sin(-x(⋅ln(-ax+1+9x2(=sinx⋅ln(ax+1+9x2(,∴-sinx⋅ln(-ax+1+9x2(=sinx⋅ln(ax+1+9x2(,∴ln(-ax+1+9x2(+ln(ax+1+9x2(=0,∴(ax+1+9x2((-ax+1+9x2(=1,题型6单调性+奇偶性解不等式母题31.已知偶函数f(x(在区间[0,+∞)上单调递增,则满足f(2x-1(<f(2(的x的取值范围是()【解析】根据题意,f(x(是偶函数,则f(2x-1(=f(|2x-1|(,(<f(2(⇒|2x-1|(<f(2(⇒|2x-1|<2,即-2<2x-1<2,解可得-<x<;母题32.已知函数f(x(=(x-1((ax+b(为偶函数,且在(0,+∞(上单调递减,则f(3-x(<0【解析】∵f(x(=ax2+(b-a(x-b为偶函数,所以b-a=0,即b=a,∴f(x(=ax2-a,∴f(3-x(=a(3-x(2-a<0,可化为(3-x(2-1>0,即x2-6x+8>0,解得x<2或x>4母题33.已知函数f(x(=x3+2x+sinx,x∈[-1,1[,则不等式f(x-1(+f(2x-1(>0的解集【解析】函数f(x(=x3+2x+sinx,x∈[-1,1[是奇函数,且f/(x(=3x2+2+cosx>0在x∈[-1,1[上恒成立,由f(x-1(+f(2x-1(>0,得f(x-1(>-f(2x-1(=f(1-2x(,r-1≤x-1≤1|-1≤1-2x≤1,解得:<x|(x-1>1-2x∴不等式f(x-1(+f(2x-1(>0的解集为,1.母题34.已知定义在R上的函数f(x(满足f(x(=f(x+5(,当x∈[-2,0)时,f(x(=-(x+2(2,f(x(=x,则f(1(+f(2(+⋯+f(2021(=()【解析】由f(x(=f(x+5(可知f(x(周期为5,3)时,f(x(=x,可知f(-2(=0,f(-1(=-1,f(0(=0,f(1(=1,f(2(=2,∴f(-2(+f(-1(+f(0(+f(1(+f(2(=2,∴每个周期:f(x(+f(x+1(+f(x+2(+f(x+3(+f(x+4(=2,∴f(1(+f(2(+⋯+f(2021(=f(1(+2×404=809.母题35.已知定义在R上的奇函数f(x(满足f(x+8(=f(x(,关于x=2对称且在区间[0,2[A.f(-25(<f(11(<f(80(B.f(80(<f(11(<f(-25(C.f(11(<f(80(<f(-25(D.f(-25(<f(80(<f(11(【解析】因为f(x(满足f(x+8(=f(x(,所以f(x(的周期为8,则f(-25(=f(-1(,f(80(=f(0(,f(11(=f(3(,又因为f(x(为R上的奇函数,且关于x=2对称,所以f(3(=f(1(,则f(x(在[-2,0[上也是单调递增,所以f(x(在[-2,2[上单调递增,故f(-1(<f(0(<f(1(,所以f(-25(<f(80(<f(11(.母题36.已知函数f(x((x∈R(满足f(-x(=2-f(x(,若函数与y=f(x(图象的交xi+yi(=()A.0B.mC.2mD.4m【解析】函数f(x((x∈R(满足f(-x(=2-f(x(,即为f(x(+f(-x(=2,,2-y1(也为交点,(x2,2-y2(也为交点,...=m.母题37.设函数f(x(是定义在R上的偶函数,对任意x∈R,都有f(x+2(=f(x-2(,且当x-2,0[时,f(x(=((x-1,若在区间(-2,6]内关于x的方程f(x(-loga(x+2(=都有f(x+2(=f(x-2(,∴f(x-2(=f(x+2(=f(2-x(,即f(x(=f(x+4(,时,-x∈[-2,0[,此时f(-x(=((-x-1=f(x(,即f(x(=2x-1,分别作出函数f(x((图中黑色曲线)和y=loga(x+2((图中红色曲线)图象如图:由在区间(-2,6]内关于x的方程f(x(-loga(x+2(=0(a>1(有3个不同的实数根,可得函数f(x(和y=loga(x+2(图象有3个交点,故有,求得<a<2,令4x+2=t,由-3≤x≤-1,可得-10≤t≤-2,当x=1时,y=,当x=2时,y=-1+,【解析】y=x2-2x+3=(x-1(2+2,母题41.函数y=的值域为()A.B.D.2y+2xy+3y=2x2+4x-7∴(y-2(x2+(2y-4(x+3y+7=02+2x+3=(x+1(2+2>0∴函数的定义域为R当y≠2时,Δ=(2y-4(2-4(y-2((3y+7(≥0即:(2y+9((y-2(≤0母题43.函数y=x+4+、9-x2的值域+4[=3cosθ+4+3sinθ=3、2sin(θ++4.∵0≤θ≤π,∴≤θ+≤,∴-≤sin(θ+≤1,+4[.母题44.函数y=、x2+9+x2-10x+29的最小值为.【解析】y=(x-0(2+(3-0(2+(x-5(2+(0+2(2可以看作是x轴上的动点P(x,0(到两x=3时ymin==5√2.ymin=5/2.母题45.若不等式m+、-x2-2x≤x+1对x∈[-2,0[恒成立,则实数m的取值范围是 【解析】不等式即为、-x2-2x≤x+1-m.令f(x(=-x2-2x=-(x+1(2+1,g(x(=x+1-m.件.所以实数m的取值范围是m≤-、2.【答案】m≤-、2.336【解析】依题意f/(x(=(x2-2x-3(=(x-3((x+1(,故函数在区间小值为f(3(=f(x(=的最大值是因为f(-1(=e,f(1(=所以最大值e.故答案为:e【解析】(1(0.027--2+(2、2-1(0=-49+-1=-45(2)原式=+2×2-=2+2+3(=2-2-3=-3.母题49.计算log525+log336-log34-+lg5+lg3log32=N=log525+log336-log34-+lg5+lg3log32=log552+(log34+log39(-log34-+lg5+lg3×log32=2+log332-1+lg5+lg3×=2+2-1+lg(5×2(=2+2-1+1=4.2,b==2,从而a>b.c3=(3=25a3=(23=16从而c>a.【答案】c>a>b.母题51.若a>b>1,0<c<1,则()A.ac<bcB.abc>bacC.alogbc<blogacD.logac<logbc因为a>b>1,所以ac>bc,故A错误;因为0<c<1,所以-1<c-1<0,所以函数y=xc-1在(0,+∞(上单调递减,因为a>b>1,所以ac-1<bc-1,即abc>bac,故B正确;因为0<c<1,所以y=logcx在(0因为a>b>1,所以logca<logcb<0,即<<0,所以0>logac>logbc,故D错误;因为0<-logac<-logbc,所以-blogac<-alogbc,所以alogbc<blogac,故C正确.A.b<c<aB.a<b<cC.a<c<bD.c<a<b20.2<log21=0,∴a<0,0<c<1,∴a<c<b,x=3y=5z,则()A.2x<3y<5zB.5z<2x<3yC.3y<5z<2xD.3y<2x<5z令2x=3y=5z=k>1.lgk>0.3=69>3>lg2>lg55>0.∴3y<2x<5z.令2x=3y=5z=k>1.lgk>0.>1,可得2x>3y,>1.可得5z>2x.综上可得:5z>2x>3y.母题54.已知函数f(x(的定义域是(0,+∞(,且满足f(xy(=f(x(+f(y(,f((=1,如果对于0<x<y,都有f(x(>f(y(,则不等式f(-x(+f(3-x(≥-2的解集为f(xy(=f(x(+f(y(∴令x=y=1得f(1(=f(1(+f(1(,再令x=2,y=,∴f(2(=-1令x=y=2,∴令x=y=2得f(4(=f(2(+f(2(=-2,∵对于0<x<y,都有f(x(>f(y(.∵f(-x(+f(3-x(≥-2.∴f(x(+f(x-3(≥f(4(,∴f[x(x-3([≥f(4(,解得-1≤x<0x+2x-1|x+2的图象为y=|log2x-1|=图象为:母题56.下列函数中,其图象与函数y=lnx的图象关于直线x=1对称的是()A.y=ln(1-x(B.y=ln(2-x(C.y=ln(1+x(D.y=ln(2+x(则:函数y=lnx的图象与y=ln(-x(的图象关于y轴对称.由于函数y=lnx的图象关于直线x=1对称.则:把函数y=ln(-x(的图象向右平移2个单位即可得到:y=ln(2-x(.即所求得解析式为:y=ln(2-x(.题型22“知式选图”母题57.函数f(x(=在[-π,π[的A.B.C.D.AB.C.AB.C.由y=f(x(=在[-6,6[,知f(-x(==-f(x(,又f(4(=因此排除A,D.D.③④②①A.①④②③B.①④③②C.③②④①母题60.已知定义在R上的奇函数f(x(满足f(x-4(=-f(x(,且在区间[0,2[上是增函数,若方程f(x(=m(m>0(在区间[-8,8[上有四个不同的根,则x1+x2+x3+x4=f(x-4(=-f(x(,可得周期T=8,且关于直线x=2对称,根据图象,可得x1+x2=-12,x3+x4=4,1+x2+x3+x4=-8,=f(x(的图象与y=log3|x|的图象的交点个数为-1,1[时,f(x(=x2,∴f(3(=f(1(=1,=y=log33=1,作出函数f(x(和y=log3|x|的图象如图:母题62.已知函数f(x(=cosx+ex-2(x<0(与g(x(=cosx+ln(x+m(图象上存在关于y轴【解析】由题意知,方程f(-x(-g(x(=0在(0,+∞(上有解,即e-x-ln(x+m(-2=0在(0,+∞(上有解,即函数y=e-x与y=ln(x+m(+2在(0,+∞(上有交点,则lnm<1-2或m≤0,母题63.函数f(x(=1-xlog2x的零点所在区间是()【解析】∵函数f(x(=1-xlog2x,f(1(=1-0=1>0,f(2(=1-2=-1<0,根据函数零点的判定定理可得函数f(x(=1-xlog2x的零点所在母题64.若a<b<c,则函数f(x(=(x-a((x-b(+(x-b(⋅(x-c(+(x-c((x-a(的两个零【解析】∵a<b<c,∴f(a(=(a-b((a-c(>0,f(b(=(b-c((b-a(<0,f(c(=(c-a((c-b(>0,母题65.已知函数f(x(是定义在R上的奇函数,当x>0时,f(x(=lnx-x+2,试判断f(x(【解析】函数f(x(是定义在R上的奇函数,所以f(0(=0.x=0是函数的零点,当x>0时,f(x(=lnx-x+2,x=1时,函数取得最大值,f(1(=0-1+2=1>0,x=e2时,f(e2(=2-e2+2<0,所以f(x(的零点个数5个.母题66.已知函数f(x(=与g(x(=1-sinπx,则函数F(x(=f(x(-g(x(在区间母题67.已知函数f(x(=<0(a>0且a≠1(在R上单调递减,且关于x函数f(x(=<0(a>0且α≠1(f(x(|=2-x有且仅有一个解,当3a>2即a>时,联立|x2+(4a-3(x+3a|=2-x,则△=(4a-2(2-4(3a-2(=0,母题68.已知函数f(x(=x≤1,若关于x的方程f(x(=-x+a(a∈R(恰有两个互A.B.C.D.关于x的方程f(x(=-x+a(a∈R(恰有两个互异的实数解,即为y=f(x(和y=-的图象有两个交点,考虑直线与在x>1相切,可得x2=1,由△=a2-1=0,解得a=1(-1舍去母题69.已知函数f(x(=g(x(=f(x(-kx(k∈R(由0<x<π,xsinx=x,即为sinx=1,解得x=;当x≥π,x=kx,(k>0(,最多一解,解得0<k≤;又0<x<π时,xsinx=kx,即为sinx=k有两解,综上可得0<k≤.母题70.已知函数f(x(=则函数g(x(=f(f(x((-的零点个数是()A.4B.3C.2D.1当x≤0时,由f(x(=得x+1=,即x=-1=-,当x>0时,由f(x(=得log2x=,即x==、2,由g(x(=f(f(x((-=0得f(f(x((=,则f(x(=-或f(x(=、2,若f(x(=-,此时方程f(x(=-有两个交点,若f(x(=2,此时方程f(x(=2只有一个交点,则数g(x(=f(f(x((-的零点个数是3个,.【解析】方程f2(x(-f(x(=0可解出f(x(=0或f(x(=1方程f2(x(-f(x(=0的不相等的实根个数即两个函数f(x(=0或f(x(=1的所有不相等的根的个数的和,方程的根的个数与两个函数y=0,y=1的图象与函数f(xy=0的图象与函数f(x(的图象的交点个数有三个,故方程f2(x(-f(x(=0有7个解,故答母题72.已知函数f(x(=|x|-1,关于x的方程f2(x(-|f(x(|+k=0,下列四个结论中正确的∴当a=-1时,f(x(=a有且只有一个当a>-1时,f(x(=a有两个不同的解,∵令f(x(=t,则方程f2(x(-|f(x(|+k=0可化为k=|t|-t2,作函数k=|t|-t2的图象如右,当时,k=|t|-t2有两个不同的解,故方程方程f2(x(-|f(x(|+k=0当0<k<时,k=|t|-t2有4个不同的解,且-1<t<1,故方程方程f2(x(-|f(x(|+k=0当k=0时,k=|t|-t2有三个不同的解,分别为-1,0,1;故方程方程f2(x(-|f(x(|+k=0有5个不同的解,则③正确;当k<0时,k=|t|-t2有两个不同的解,且t<-1或t>1,故方程方程f2(x(-|f(x(|+k=0有2个不同的解,则①正确;母题73.函数f(x(=则函数y=2[f(x([2-3f(x(+1的零点个数为()A.1B.2C.3D.4【解析】由y=2[f(x([2-3f(x(+1=0得[f(x(-1[[2f(x(-1[=0,即f(x(=1或f(x(=,函数f(x(=当f(x(=1时,方程有2个根,x=e,x=0;当f(x(=时,方程有2个根,x=1舍去,x=e,母题74.已知函数f(x(=1,x≤0,若方程f2(x(+bf(x(+2=0有8个相异实根,则A.(-4,-2)B.(-4,-22(C.(-3,-2)D.(-3,-2、2(【解析】令f(x(=t,则方程f2(x(+bf(x(+2=0⇔方程t2+bt+2=0.如图是函数f(x(=1,x≤0,的图象,根据图象可得:方程f2(x(+bf(x(+2=0有8个相异实根⇔方程t2+bt+2=0.有两个不等实数解t1,t2,则x+x+x+x+x等于①若x=1,f(x(=1,故12+b+=0,b=-解=1得:x=0或x=2;解得:x=-1或x=∴x+x+x+x+x=12+02+22+(-1(2+32=15.了某地区新冠肺炎累计确诊病例数I(t((t的单位:天)的Logistic模型:I(t(=其中K为最大确诊病例数.当I(t*(=0.95K时,标志着已初步遏制疫情,则t*【解析】由已知可得=0.95K,解得e-0.23(t-52(=,两边取对数有-0.23(t-52(=-ln19≈-3,解得t≈65,可以用指数模型:I(t(=ert描述累计感染病例数I(t(随时间t(单位:天)的变化规律,指数增长率r与R0,T近似满足R0=1+rT.有学者基于已有数据估计出R0=3.28,T=6.据()【解析】因为R0=3.28,T=6,且R0=1+rT,设累计感染病例数增加3倍需要的时间约为t则I(t(=2I(0(,即ert=2,即e0.38t=2,两边取自然对数可得,lne0.38t=ln2,(PB=y(.令P与Q同时分别从A,C出发,那么,定义x为y的纳皮尔对数【解析】设P运动到第一个三等分点的时间为t1,此时Q运动的距离为x1,P运动到中点的时间为t2,此时Q运动的距离为x2,1=107log2=107log,(1)y=x7+x6-3x5;(2)y=x+x-1;(3)y=(3x2+2((x-5(;(6)y=(x+1((x+2((x+3(.【解析】(1)“y=x7+x6-3x5,:y/=7x6+6x5-15x4;(2(“y=x+x-1,:y/=1-x-2;(3(“y=(3x2+2((x-5(,:y/=(3x2+2(/(x-5(+(3x2+2((x-5(/=6x(x-5(+(3x2+2(=9x2-30x+2;(4)“y=,(sinx(/.x-sinx.(x(/:y/=x2=xcosx-sinxx2;(5)“y=,(6)“y=(x+1((x+2((x+3(,:y/=(x+1(/(x+2((x+3(+(x+1((x+2(/(x+3(+(x+1((x+2((x+3(/=(x+2((x+3(+(x+1((x+3(+(x+1((x+2(=(x2+5x+6(+(x2+4x+3(+(x2+3x+2(母题80.已知函数f(x(=ln(2x-3(+axe-x,若f/(2(=1,则a=.22(=2+ae-2-2ae-2=2-ae-2=1,母题81.已知函数f(x(的导函数为f/(x(,f(x(=2x2-3xf/(1(+lnx,则f(1(=.【答案】-【解析】∵f(x(=2x2-3xf/(1(+lnx,x(=4x-3f/(1(+,将x=1代入,得f/(1(=4-3f/(1(+1,得f/(1(=.∴f(1(=2-=-.母题82.已知曲线y=-3lnx的一条切线的斜率为-,则切点的横坐标为令-=-,解得x=2或x=-3(舍去)。母题83.已知曲线y=aex+xlnxA.a=e-1,b=1B.a=e-1,b=-1C.a=e,b=-1D.a=e,b=1x+xlnx,∴y/=aex+lnx+1,母题84.已知函数f(x(在R上满足f(x(=2f(2-x(-x2+8x-8,则曲线y=f(x(在点A.y=-2x+3B.y=xC.y=3x-2D.y=2x-1【解析】∵f(x(=2f(2-x(-x2+8x-8,∴f(2-x(=2f(x(-(2-x(2+8(2-x(-8.∴f(2-x(=2f(x(-x2+4x-4+16-8x-8.将f(2-x(代入f(x(=2f(2-x(-x2+8x-8得f(x(=4f(x(-2x2-8x+8-x2+8x-8.∴f(x(=x2,f/(x(=2x∴函数y=f(x(在(1,f(1((处即y=2x-1.【答案】x-y-1=0故切线方程为y-0=(x-1(⇒x-y-1=0.故答案为:x-y-1=0母题86.若直线y=kx+b是曲线y=lnx+2的切线,也是曲线y=ln(x+1(的切线,则b=()A.1B.C.1-ln2D.1-2ln2【解析】设y=kx+b与y=lnx+2和y=ln(x+1(的切点分别为(x1,kx1+b(、(x2,kx2+b(由导数的几何意义可得,得x1=x2+1,kx1+b=lnx1+22+bkx1+b=lnx1+2联立上述式子解得k=2,x1=,x2=-.代入kx1+b=lnx1+2,解得b=1-ln2.(1)f(x(=x-alnx;(2)g(x(=(x-a-1(ex-(x-a(2.令f(x(=0,得x=a,①当a≤0时,f(x(>0在(0,+∞(上恒成立,f(x(<0,g(x(=(x-a(ex-2(x-a(=(x-a((ex-2(,令g(x(=0,得x=a或x=ln2,①当a>ln2时,f(x(>0,f(x(<0,③当a<ln2时,f(x(>0,f(x(<0,母题88.函数f(x(=x-sin2x+asinx在R上单调递增,则a的取值范围为【解析】函数f(x(=x-sin2x+asinx的导数为f(x(=1-cos2x+acosx,由题意可得f(x(≥0恒成立,即为1-cos2x+acosx≥0,即有-cos2x+acosx≥0,设t=cosx(-1≤t≤1(,即有5-4t2+3at≥0,当0<t≤1时,3a≥4t-,可得3a≥-1,即a≥-;当-1≤t<0时,3a≤4t-,x(=2x-kex,∵f(x(在(0,+∞(上单调递减,∴f/(x(=2x-kex≤0在(0,+∞(上恒成立,即k≥,母题90.对任意x∈R,函数y=f(x(的导数都存在,若f(x(+f/(x(>0恒成立,且a>0,则下A.f(a(<f(0(B.f(a(>f(0(C.ea⋅f(a(<f(0(D.ea⋅f(a(>f(0(x(=ex(f(x(+f/(x((>0,a⋅f(a(>f(0(.母题91.已知奇函数f(x(的导函数为faf(a(≥2f(2-a)+af(a-2(,则实数a的取值范围是()A.(-∞,-1(B.[-1,1[∵f(x(为奇函数,即f(-x(=-f(x(,∴g(-x(=-xf(-x(=xf(x(=g(x(,即函数g(x(为偶函数“x∈(0,+∞(时,xf/(x(+f(x(>0.:g/(x(>0,“af(a(≥2f(2-a(+af(a-2(=(2-a(f(2-a(,:g(a(≥g(2-a(,:|a|≥|2-a|解可得,a≥1母题92.若定义在R上的函数f(x(满足f(x(+f/(x(<1,f(0(=4,则不等式ex[f(x(-1[>3(e【解析】设g(x(=exf(x(-ex,(x∈R(,x(=exf(x(+exf/(x(-ex=ex[f(x(+f/(x(-1[,“f(x(+f/(x(<1,:f(x(+f/(x(-1<0,:g/(x(<0,:y=g(x(在定义域上单调递减,“exf(x(>ex+3,:g(x(>3,又“g(0(=e0f(0(-e0=4-1=3,:g(x(<g(0(,:x<0母题93.已知函数f(x(=x3+ax2+bx+a2在x=1处有极值10,则f(2(等于()【解析】f/(x(=3x2+2ax+b,3+2a+b=0rb=-3-2a#/DEL/#ra=4ra=-3:3+2a+b=0rb=-3-2a#/DEL/#ra=4ra=-3①当3时,f/(x(=3(x-1(2≥0,:在x=1处不存在极值;a=4f/(x(=3x2+8x-11=(3x+11((a=4a=4:b=-11,:f(2(=8+16-22+16a=4【解析】f/(x(=lnx-aex+1,若函数f(x(=xlnx-aex有两个极值点,只需0<a<,母题95.已知函数f(x(=ax2+bx+clnx(a>0(在x=1和x=2处取得极值,且极大值为-A.0C.2ln2-4D.4ln2-41(=2a+b+c=0①则f(1(=a+b+cln1=a+b=-,③,由①②③得a=,b=-3,c=2,即f(x(=x2-3x+2lnx,由fl(x(>0得4≥x>2或0<x<1,此时为增函数,由fl(x(<0得1<x<2,此时f(x(为减函数,则当x=1时,f(x(取得极大值,极大值为-,又f(4(=8-12+2ln4=4ln2-4>-,母题96.若函数f(x(=-x3+ax2+x-1有且只有一个零点,则实数a的取值范围为()【解析】函数f(x(=-x3+ax2+x-1有且只有一个零点,等价于关于x的方程ax2=x3-x设函数h(x(=x-,则hl(x(=1+设g(x(=x3+x-2,hl(x(=3x2+1>0,h(x(为增函数,母题97.若函数f(x(=2x3-ax2+1(a∈R(在(0,+∞(内有且只有一个x(=2x(3x-a(,x∈(0,+∞(,①当a≤0时,f/(x(=2x(3x-a(>0,函数f(x(在(0,+∞(上单调递增,f(0(=1,②当a>0时,f/(x(=2x(3x-a(>0的解为x>,又f(x(只有一个零点,f(x(=2x3-3x2+1,f/(x(=6x(x-1(,x∈[-1,1[,f(-1(=-4,f(0(=1,f(1(=0,∴f(x(min=f(-1(=-4,f(x(max=f(0(=1,f(x(max+f(x(min=-4+1=-3.母题98.已知函数f(x(=ex-ax2-bx.当a>0,b=0时,讨论函数f(x(在区间(0,+∞(上零【解析】当x>0,a>0,b=0时,函数f(x(零点的个数即方程ex=ax2根的个数.x(=,当,+∞母题99.已知函数f(x(=lnx-.讨论f(x(的单调性,并证明f(x(有且仅有两个零点;又∵f(e(<0,f(e2(>0,f(e(⋅f(e2(<0,故f(x(在定义域内有且仅有两个零点;母题100.函数f(x(=2ex-a(x-1(2有且只有一个零点,则实数a的取值范围是()【解析】f(x(=2ex-a(x-1(2=0,x=1时不成立,g(x(单调递增;1<x<3时,g/(x(<0时,函数g(x(单调递减;母题101.已知函数f(x(=ex-m-xlnx,f(x(的导函数为f/(x(.若g(x(=f/(x(-m+1,讨论【解析】g(x(=f/(x(-m+1=ex-m-lnx-m(m>0(.令g(x(=0,得ex-m=lnx+m.x=em(lnx+m(,则xex=xem(lnx+m(=em+lnx(lnx+m(.令φ(x(=xex,则φ(x(=φ(m+lnx(,x(=(x+1(ex>0,∴当x>0时φ(x(=xex为增函数,∴x=m+lnx,即m=x-lnx(x>0(,令t(x(=x-lnx(x>0(,则t/(x(=1-.当0<x<1时,t/(x(<0,当x>1时,t/(x(>0,∴t(x(min=t(1(=1.当m=1时,m=x-lnx有一个解,即g当m>1时,m=x-lnx有两个解,即g(x(有两个零点.母题102.已知函数f(x(=x3-x2+x.当x∈[-2,4[时,求证:x-6≤f(x(≤x.【解析】x-6≤f(x(≤x,即-6≤x3-x2≤0,x∈[-2,4[恒成立,令g(x(=x3-x2,x∈x(=x2-2x=x(x-(,令g/(x(>0得-2<x<0,或<x<4,g/(x(g(x(min=-6,g(0(=0,g(4(=0,故g(x(max=0,故-6≤g(x(≤0,当x∈[-2,4[时恒成立,母题103.设函数f(x(=e2x-alnx.证明:当a>0时,f(x(≥2a+aln.f(x(=e2x-alnx的定义域为(0,+∞(,∴f/(x(=2e2x-.当a≤0时,f/(x(>0恒成立,故f/(x(没有零点,当a>0时,∵y=e2x为单调递增,y=-单调递增,∴f/(x(在(0,+∞(单调递增,又f/(a(>0,假设存在b满足0<b<时,且b<,f/(b(<0,故当a=0,所以f(x0(=+2ax0+aln≥2a+aln.故当a>0时,f(x(≥2a+aln.母题104.已知函数f(x(=ex2-xlnx.求证:当x>0时,f(x(<xex+.【解析】要证f(x(<xex+,只需证ex-lnx<ex+,即ex-ex<lnx+.令h(x(调递增,则h(x(min==0,所以lnx+≥0.再令φ(x(=ex-ex,则φ/(x(=e-exex≤0.因为h(x(与φ(x(不同时为0,所以ex-ex<lnx+,故原不等式成立.母题105.已知函数f(x(=aln(x-1(+,其中a为正实数.证明:当x>2时,f(x(<ex+(a-1(x-2a.x(<0,即lnx≤x-1,当且仅当x=1时取“=”.当x>2时,ln(x-1(<x-2,又a>0,∴aln(x-1(<a(x-2(.要证f(x(<ex+(a-1(x-2a,只需证aln(x-1(+-<ex+(a-1(x-2a,只需证a(x-2(+-<ex+(a-1(x-2a,x-x-->0对于任意的x>2恒成立.所以h(x(>h(2(=e2-4>0,所以当x>2时,f(x(<ex+(a-1(x-2a.A.4B.3C.2D.1【解析】当x≤0时,∀a>0,xa≤ex-1+x2+1恒成立;当x>0,a≤+x+,则0<x<1时,f(x(<0,f(x(递减;x>1时,f(x(>0,f(x(递增,则f(x(的最小值为f(1(=3,A.e+4B.e+3C.e+2D.e+1【解析】分类参数得a≤=+2x+对于任意x>0恒成立,当0<x<1时,g(x(<0,当x>1时,g(x(>0,所以g(x(min=g(1(=e+2+2=e+4,所以a≤e+4,()A.设f(x(=,f/(x(==,由x>0,可得0<x<时,f/(x(>0,f(x(递增;<x<3时,f/(x(<0,f(x(递减;x>3时,f/(x(>0,f(x(递增.且x>3时,f(x(<0,即有x=处,f(x(取得最大值,且母题109.已知函数f(x(=lnx,若对任意的x1,x2∈(0,+∞(,都有[f(x1(-f(x2([(x-x(>A.-1B.0C.1D.2【解析】∵f(x(=lnx,∴f(x1(-f(x2(=lnx1-lnx2=ln,f(x1(-f(x2([(x-x(>k(x1x2+x(恒成立,且x1,x2∈(0,+∞(,1x2+x>0,x1+x2>0,令t=,g(t(=tlnt-lnt,(t>0且t≠1(,t(=lnt+1-,令g/(t(=0,得t=1.t(<0,g(t(单调递减,t(>0,g(t(单调递增,t(min>g(1(=0.母题110.已知函数f(x(=ax+lnx(a∈R(f(x1(<g(x2(,求f/(x(=a+,x>0⋯(2分(f/(x(>0,所以函数f(x(的单调增区间为(0,+∞(,⋯(4分(当a<0时,令f/(x(=0,得x=-.当x变化时,f/(x(与f(x(变化情况如下表:x-af/(x(+0-f(x(所以函数f(x(的单调增区间为(0,-,函数f(x(的单调减区间为,+∞(⋯(6分((2)由已知,转化为f(x(max<g(x(max⋯(8分(所以g(x(max=2⋯(9分((或者举出反例:存在f(e3(=ae3+3>2,故不符合题意.)⋯(10分(当a<0时,f(x(在(0,-上单调递增,在(-,+∞(上单调递减,故f(x(的极大值即为最大值,f(-=-1+ln(-=-1-ln(-a(,⋯(11分(所以2>-1-ln(-a(,解得a<-.母题111.已知函数f(x(=ex-mx2-2x.若x∈[0,+∞)时,f(x(>-1恒成立,求m的取值范围.>-1恒成立,x-2x-+1>mx2恒成立.当x=0时,对于任意m都成立,⋯(5分(令h(x(=(x-2(ex+2x+e-2,注意到h(1(=0,hx(=(x-1(ex+2,h/(x(=xex>0,0,+∞(单调递增,h/(x(>h/(0(=1>0.故m<-1.母题112.已知函数f(x(=x+-2.若关于x的不等式f(x(≥alnx+-2恒成立,求实数【解析】由题意,x+-alnx-≥0恒成立,令p(x(=x+-alnx-,则p/(x(=由题意需p(x0(≥0,即x0+-(x0-(lnx0- -e,e-|.母题113.已知函数f(x(=aex-1-lnx+lna(e是自然对数的底).解法一:∵f(x(=aex-1-lnx+lna,x(=aex-1-,且a>0.设g(x(=f/(x(,则g/(x(=aex-1+∴f(x(min=f(1(=1,1(=-1-1((a-1(<0,0>0,使得f/(x0(=aex0-1-=0,且当x∈(0,x0(时,f/(x(<0,,+∞(时f/(x(>0,∴aex0-1=,∴lna+x0-1=-lnx0,因此f(x(min=f(x0(=aex0-1-lnx0+lna=+lna+x0-1+lna≥2lna-1+2⋅x0=2lna+1>1,当0<a<1时,f(1(=a+lna<a<1,∴f(1(<1,f(x(≥1不是恒成立.解法二:f(x(=aex-1-lnx+lna=elna+x-1-lnx+lna≥1等价于elna+x-1+lna+x-1≥lnx+x=elnx+lnx,令g(x(=ex+x,上述不等式等价于g(lna+x-1(≥g(lnx(,显然g(x(为单调增函数,∴又等价于lna+x-1≥lnx,即lna≥lnx-x+1,令h(x(=lnx-x+1,则h/(x(=-1=解法三:由(1)得f(x(=ex-1-lnxx-1-lnx≥1---(7分(对任意x0>0,g(x0(=aex-1-lnx0+lna在(0,+∞(上单调递增,所以,当a≥1时,f(x(=aex-1-lnx+lna≥ex-1-lna≥1,当0<a<1时,f(x(=aex-1-lnx+lna<ex-1-lnx即存在x=1使f(1(=a+lna<1,不合题意,母题114.已知函数f(x(=,若x1>x2>0,求证:[x1f(x1(-x2f(x2([(x+x(>2x2(x1-x2(.【解析】当x1>x2>0时,要证明[x1f(x1(-x2f(x2([(x+x(>2x2(x1-x2(,令>1,设u(t(=lnt-,则u/(t(=即[x1f(x1(-x2f(x2([(x+x(>2x2(x1-x2(.母题115.已知函数f(x(=x3+klnx(k∈R(,f/(x(为f(x(的导函数.=f(x(-f/(x(+-1的单调区间和极值;所以曲线y=f(x(在点(1,f(1((处的切线方程为y-1=5(x-1(,即y=5x-4.xx=1x(-0+g(x((3)证明:由f(x(=x3+klnx,得f/(x(=3x2+.1>x2,令=t(t>1(,则(x1-x2((f/(x1(+f/(x2((-2(f(x1(-f(x2((=(x1-x2((3x++3x+(x-x+klnx2+3x1x-2kln=x(t3-3t2+3t-1(+k(t--2lnt(①,当x>1时,h/(x(=1+-=(1-2>0,所以当t>1时,h(t(>h(1(,即t--2lnt>0,因为x2≥1,t3-3t2+3t-1=(t-1(3>0,k≥-3,所以x(t3-3t2+3t-1(+k(t--2lnt(≥t3-3t2+3t-1-3(t--2lnt(=t3-3t2+6lnt+-1②,t(>g(1(,即t3-3t2+6lnt+>1,故t3-3t2+6lnt+-1>0③,由①②③可得(x1-x2((f/(x1(+f/(x2((-2(f(x1(-f(x2((>0,(α-=.(α-=sin2=1-cos2=1-(-2=【答案】-当k为偶数时,A=当k为奇数时=-2.
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论