下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
山西省大同市煤矿集团公司煤峪口矿北中学2021-2022学年高三数学文期末试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.将函数向右平移个单位,得到函数的图象,则等于(
)A.
B.
C.
D.参考答案:C试题分析:由题意,.考点:三角函数图象的平移.2.若实数满足,则的取值范围是(
)A.(0,3) B.[0,3] C.(3,+∞) D.[3,+∞) 参考答案:D3.一个袋中装有大小相同的5个球,现将这5个球分别编号为1,2,3,4,5,从袋中取出两个球,每次只取出一个球,并且取出的球不放回.求取出的两个球上编号之积为奇数的概率为(
)A.
B.
C.
D.参考答案:B4.设是实数(I为虚数单位),则等于
(
)
A.
B.1
C.
D.2参考答案:B5.已知集合,则任取,关于的方程无实根的概率(
)
A.
B.
C.
D.参考答案:D6.定义运算:,将函数的图象向左平移个单位,所得图象对应的函数为偶函数,则的最小值是(
)A.
B.
C.
D.参考答案:D7.设p:x<3,q:﹣1<x<3,则p是q成立的()A.充分必要条件 B.充分不必要条件C.必要不充分条件 D.既不充分也不必要条件参考答案:C【考点】必要条件、充分条件与充要条件的判断.【分析】判断必要条件与充分条件,推出结果即可.【解答】解:设p:x<3,q:﹣1<x<3,则p成立,不一定有q成立,但是q成立,必有p成立,所以p是q成立的必要不充分条件.故选:C.8、若变量满足约束条件且的最大值为,最小值为,则的值是(
)(A) (B) (C) (D)参考答案:C9.若点和点到直线的距离依次为1和2,则这样的直线有A.1条
B.2条
C.3条
D.4条参考答案:C略10.已知向量,若,则实数(
)A.1
B.-1
C.2
D.-2
参考答案:B略二、填空题:本大题共7小题,每小题4分,共28分11.每个航班都有一个最早降落时间和最晚降落时间,在这个时间窗口内,飞机均有可能降落.甲航班降落的时间窗口为上午10点到11点,如果它准点降落时间为上午10点40分,那么甲航班晚点的概率是;若甲乙两个航班在上午10点到11点之间共用一条跑道降落,如果两架飞机降落时间间隔不超过15分钟,则需要人工调度,在不考虑其他飞机起降的影响下,这两架飞机需要人工调度的概率是.参考答案:;
【考点】函数模型的选择与应用.【分析】利用几何概型,求出甲航班降落的时间窗口为上午10点到11点,如果它准点降落时间为上午10点40分,甲航班晚点的概率;试验包含的所有事件是Ω={(x,y)|0≤x≤1,0≤y≤1},做出事件对应的集合表示的面积,写出满足条件的事件是A={(x,y)|0≤x≤1,0≤y≤1,|x﹣y|≤},算出事件对应的集合表示的面积,根据几何概型概率公式得到结果.【解答】解:甲航班降落的时间窗口为上午10点到11点,如果它准点降落时间为上午10点40分,那么甲航班晚点的概率是=;设甲乙两个航班到达的时间分别为(10+x)时、(10+y)时,则0≤x≤1,0≤y≤1若两架飞机降落时间间隔不超过15分钟,则|x﹣y|≤正方形的面积为1,落在两直线之间部分的面积为1﹣()2=,如图:∴这两架飞机需要人工调度的概率是.故答案为;.【点评】本题是一个几何概型,对于这样的问题,一般要通过把试验发生包含的事件同集合结合起来,根据集合对应的图形做出面积,用面积的比值得到结果.12.已知,则=___▲___.参考答案:13.如图,正方形的边长为2,为的中点,射线从出发,绕着点顺时针方向旋转至,在旋转的过程中,记为,所经过的在正方形内的区域(阴影部分)的面积,那么对于函数有以下三个结论:①;②任意,都有;③任意,,且,都有其中所有正确结论的序号是.参考答案:①②.考点:函数性质的运用.14.i+i2+i3+……+i2012=
.参考答案:0i+i2+i3+i4=0,∴i+i2+i3+……+i2012=0.
15.函数在区间上的值域是
。参考答案:略16.命题“”的否定是
;参考答案:因为命题“”的否定是“”所以命题“”的否定是
17.函数是定义在上的奇函数,且,对于任意,都有恒成立,则的值为
。参考答案:0三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.已知函数f(x)=的定义域为R.(Ⅰ)求实数m的取值范围.(Ⅱ)若m的最大值为n,当正数a、b满足+=n时,求7a+4b的最小值.参考答案:考点:基本不等式;函数的定义域及其求法.专题:不等式的解法及应用.分析:(1)由函数定义域为R,可得|x+1|+|x﹣3|﹣m≥0恒成立,设函数g(x)=|x+1|+|x﹣3|,利用绝对值不等式的性质求出其最小值即可;(2)由(1)知n=4,变形7a+4b=,利用基本不等式的性质即可得出.解答: 解:(1)∵函数定义域为R,∴|x+1|+|x﹣3|﹣m≥0恒成立,设函数g(x)=|x+1|+|x﹣3|,则m不大于函数g(x)的最小值,又|x+1|+|x﹣3|≥|(x+1)﹣(x﹣3)|=4,即g(x)的最小值为4,∴m≤4.(2)由(1)知n=4,∴7a+4b===,当且仅当a+2b=3a+b,即b=2a=时取等号.∴7a+4b的最小值为.点评:本题考查了函数的定义域、绝对值不等式的性质、基本不等式的性质、“乘1法”,考查了推理能力与计算能力,属于中档题.19.如图,已知平面平面,与分别是棱长为1与2的正三角形,//,四边形为直角梯形,//,,点为的重心,为中点,.(Ⅰ)当时,求证://平面;(Ⅱ)若直线与所成角为,试求二面角的余弦值.参考答案:(1)证明见解析;(2).(Ⅱ)平面平面,易得平面平面,以为原点,为x轴,为y轴,为z轴建立空间直角坐标系,则,设,,,因为与所成角为,所以,得,,,设平面的法向量,则,取,面的法向量,所以二面角的余弦值。考点:空间线面的平行的判定及向量的数量积公式等有关知识的综合运用.20.设函数f(x)=-sin(2x-).(1)求函数f(x)的最大值和最小值;(2)△ABC的内角A,B,C的对边分别为a,b,c,c=3,f()=,若sinB=2sinA,求△ABC的面积.参考答案:(1)
∴当时,函数取得最大值1;当时,函数取得最小值0
(2)
又
略21.在直三棱柱ABC-A1B1C1中,AB=AC=AA1=3a,BC=2a,D是BC的中点,E,F分别是A1A,C1C上一点,且AE=CF=2a.(1)求证:B1F⊥平面ADF;(2)求三棱锥B1-ADF的体积;(3)求证:BE∥平面ADF.参考答案:略22.设函数f(x)=x+ax2+blnx,曲线y=f(x)过P(1,0),且在P点处的切线斜率为2.(1)求a,b的值;(2)当x∈[1,e]时,求f(x)的最值;(3)证明:f(x)≤2x﹣2.参考答案:解:(1)函数f(x)=x+ax2+blnx的导数为.由已知条件得,解得a=﹣1,b=3.(2)f(x)的定义域为(0,+∞),由(1)知f(x)=x﹣x2+3lnx.令f′(x)=0解得.xf′(x)+0﹣f(x)增
减当x=时,取得最大值;当x=e时,取得最小值f(e)=e﹣e2+3.(3)设g(x)=f(x)﹣(2x﹣2)=2﹣x﹣x2+3lnx,,当0<x<1时,g′(x)>0,当x>1时,g′(x)<0,则g(x)在(0,1)递增,在(1,+∞)递减.即有x=1处取得极大值,且为最大值0故当x>0时,g(x)≤0,即f(x)≤2x﹣2.考点:利用导数研究曲线上某点切线方程;利用导数求闭区间上函数的最值.专题:方程思想;构造法;导数的综合应用;不等式的解法及应用.分析:(1)求得函数的导数,由题意可得f(1)=0,f′(1)=2,解方程可得a,b的值;(2)求得导数,求得极值点,求出端点处的函数值,可得最值;(3)构造函数g(x)=f(x)﹣(2x﹣2)=2﹣x﹣x2+3lnx,求出导数和单调区间,可得极值和最值,即可证得不等式.解答:解:(1)函数f(x)=x+ax2+blnx的导数为.由已知条件得,解得a=﹣1,b=3.(2)f(x)的定义域为(0,+∞),由(1)知f(x)=x﹣x2+3lnx.令f′(x)=0解得.xf′(x)+0﹣f(x)增
减当x=时,取得最大值
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 做围墙合同范例
- 印刷底合同范例
- 多个人合租合同范例
- 流动资金合同范例
- 法人土地出租合同范例
- 出租野餐用具合同范例
- 2025珠海市劳动合同标准版
- 人才转让合同范例范例
- 国家债务合同范例
- 完整版100以内加减法混合运算4000道149
- 2024年护校队安全工作制度(3篇)
- 安全生产知识负责人复习题库(附参考答案)
- 2024年安徽省广播电视行业职业技能大赛(有线广播电视机线员)考试题库(含答案)
- 山东省济南市济阳区三校联考2024-2025学年八年级上学期12月月考语文试题
- 糖尿病酮酸症中毒
- Unit 6 Food Lesson 1(说课稿)-2024-2025学年人教精通版(2024)英语三年级上册
- 东北师大附属中学2025届高一物理第一学期期末质量检测试题含解析
- HSE(健康、安全与环境)计划书
- GB/T 44570-2024塑料制品聚碳酸酯板材
- 雨的形成课件教学课件
- 金蛇纳瑞2025年公司年会通知模板
评论
0/150
提交评论