2023届北京市北方交大附中高考数学考前最后一卷预测卷含解析_第1页
2023届北京市北方交大附中高考数学考前最后一卷预测卷含解析_第2页
2023届北京市北方交大附中高考数学考前最后一卷预测卷含解析_第3页
2023届北京市北方交大附中高考数学考前最后一卷预测卷含解析_第4页
2023届北京市北方交大附中高考数学考前最后一卷预测卷含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2023年高考数学模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知双曲线与双曲线有相同的渐近线,则双曲线的离心率为()A. B. C. D.2.甲、乙、丙三人相约晚上在某地会面,已知这三人都不会违约且无两人同时到达,则甲第一个到、丙第三个到的概率是()A. B. C. D.3.某设备使用年限x(年)与所支出的维修费用y(万元)的统计数据分别为,,,,由最小二乘法得到回归直线方程为,若计划维修费用超过15万元将该设备报废,则该设备的使用年限为()A.8年 B.9年 C.10年 D.11年4.总体由编号为01,02,...,39,40的40个个体组成.利用下面的随机数表选取5个个体,选取方法是从随机数表(如表)第1行的第4列和第5列数字开始由左到右依次选取两个数字,则选出来的第5个个体的编号为()A.23 B.21 C.35 D.325.已知集合,,则集合的真子集的个数是()A.8 B.7 C.4 D.36.已知集合,,若,则()A.或 B.或 C.或 D.或7.在等腰直角三角形中,,为的中点,将它沿翻折,使点与点间的距离为,此时四面体的外接球的表面积为().A. B. C. D.8.函数的大致图象为A. B.C. D.9.若(1+2ai)i=1-bi,其中a,b∈R,则|a+bi|=().A. B. C. D.510.已知函数是定义在上的偶函数,且在上单调递增,则()A. B.C. D.11.已知函数,为图象的对称中心,若图象上相邻两个极值点,满足,则下列区间中存在极值点的是()A. B. C. D.12.已知三棱锥的外接球半径为2,且球心为线段的中点,则三棱锥的体积的最大值为()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知函数,若关于的方程恰有四个不同的解,则实数的取值范围是______.14.已知过点的直线与函数的图象交于、两点,点在线段上,过作轴的平行线交函数的图象于点,当∥轴,点的横坐标是15.已知双曲线的一条渐近线方程为,则________.16.如图,在平行四边形中,,,则的值为_____.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)本小题满分14分)已知曲线的极坐标方程为,以极点为原点,极轴为轴的非负半轴建立平面直角坐标系,直线的参数方程为(为参数),求直线被曲线截得的线段的长度18.(12分)已知直线与抛物线交于两点.(1)当点的横坐标之和为4时,求直线的斜率;(2)已知点,直线过点,记直线的斜率分别为,当取最大值时,求直线的方程.19.(12分)已知三棱柱中,,是的中点,,.(1)求证:;(2)若侧面为正方形,求直线与平面所成角的正弦值.20.(12分)已知点、分别在轴、轴上运动,,.(1)求点的轨迹的方程;(2)过点且斜率存在的直线与曲线交于、两点,,求的取值范围.21.(12分)一酒企为扩大生产规模,决定新建一个底面为长方形的室内发酵馆,发酵馆内有一个无盖长方体发酵池,其底面为长方形(如图所示),其中.结合现有的生产规模,设定修建的发酵池容积为450米,深2米.若池底和池壁每平方米的造价分别为200元和150元,发酵池造价总费用不超过65400元(1)求发酵池边长的范围;(2)在建发酵馆时,发酵池的四周要分别留出两条宽为4米和米的走道(为常数).问:发酵池的边长如何设计,可使得发酵馆占地面积最小.22.(10分)已知函数.⑴当时,求函数的极值;⑵若存在与函数,的图象都相切的直线,求实数的取值范围.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】

由双曲线与双曲线有相同的渐近线,列出方程求出的值,即可求解双曲线的离心率,得到答案.【详解】由双曲线与双曲线有相同的渐近线,可得,解得,此时双曲线,则曲线的离心率为,故选C.【点睛】本题主要考查了双曲线的标准方程及其简单的几何性质的应用,其中解答中熟记双曲线的几何性质,准确运算是解答的关键,着重考查了运算与求解能力,属于基础题.2、D【解析】

先判断是一个古典概型,列举出甲、乙、丙三人相约到达的基本事件种数,再得到甲第一个到、丙第三个到的基本事件的种数,利用古典概型的概率公式求解.【详解】甲、乙、丙三人相约到达的基本事件有甲乙丙,甲丙乙,乙甲丙,乙丙甲,丙甲乙,丙乙甲,共6种,其中甲第一个到、丙第三个到有甲乙丙,共1种,所以甲第一个到、丙第三个到的概率是.故选:D【点睛】本题主要考查古典概型的概率求法,还考查了理解辨析的能力,属于基础题.3、D【解析】

根据样本中心点在回归直线上,求出,求解,即可求出答案.【详解】依题意在回归直线上,,由,估计第年维修费用超过15万元.故选:D.【点睛】本题考查回归直线过样本中心点、以及回归方程的应用,属于基础题.4、B【解析】

根据随机数表法的抽样方法,确定选出来的第5个个体的编号.【详解】随机数表第1行的第4列和第5列数字为4和6,所以从这两个数字开始,由左向右依次选取两个数字如下46,64,42,16,60,65,80,56,26,16,55,43,50,24,23,54,89,63,21,…其中落在编号01,02,…,39,40内的有:16,26,16,24,23,21,…依次不重复的第5个编号为21.故选:B【点睛】本小题主要考查随机数表法进行抽样,属于基础题.5、D【解析】

转化条件得,利用元素个数为n的集合真子集个数为个即可得解.【详解】由题意得,,集合的真子集的个数为个.故选:D.【点睛】本题考查了集合的化简和运算,考查了集合真子集个数问题,属于基础题.6、B【解析】

因为,所以,所以或.若,则,满足.若,解得或.若,则,满足.若,显然不成立,综上或,选B.7、D【解析】

如图,将四面体放到直三棱柱中,求四面体的外接球的半径转化为求三棱柱外接球的半径,然后确定球心在上下底面外接圆圆心连线中点,这样根据几何关系,求外接球的半径.【详解】中,易知,翻折后,,,设外接圆的半径为,,,如图:易得平面,将四面体放到直三棱柱中,则球心在上下底面外接圆圆心连线中点,设几何体外接球的半径为,,四面体的外接球的表面积为.故选:D【点睛】本题考查几何体的外接球的表面积,意在考查空间想象能力,和计算能力,属于中档题型,求几何体的外接球的半径时,一般可以用补形法,因正方体,长方体的外接球半径容易求,可以将一些特殊的几何体补形为正方体或长方体,比如三条侧棱两两垂直的三棱锥,或是构造直角三角形法,确定球心的位置,构造关于外接球半径的方程求解.8、A【解析】

因为,所以函数是偶函数,排除B、D,又,排除C,故选A.9、C【解析】试题分析:由已知,-2a+i=1-bi,根据复数相等的充要条件,有a=-,b=-1所以|a+bi|=,选C考点:复数的代数运算,复数相等的充要条件,复数的模10、C【解析】

根据题意,由函数的奇偶性可得,,又由,结合函数的单调性分析可得答案.【详解】根据题意,函数是定义在上的偶函数,则,,有,又由在上单调递增,则有,故选C.【点睛】本题主要考查函数的奇偶性与单调性的综合应用,注意函数奇偶性的应用,属于基础题.11、A【解析】

结合已知可知,可求,进而可求,代入,结合,可求,即可判断.【详解】图象上相邻两个极值点,满足,即,,,且,,,,,,当时,为函数的一个极小值点,而.故选:.【点睛】本题主要考查了正弦函数的图象及性质的简单应用,解题的关键是性质的灵活应用.12、C【解析】

由题可推断出和都是直角三角形,设球心为,要使三棱锥的体积最大,则需满足,结合几何关系和图形即可求解【详解】先画出图形,由球心到各点距离相等可得,,故是直角三角形,设,则有,又,所以,当且仅当时,取最大值4,要使三棱锥体积最大,则需使高,此时,故选:C【点睛】本题考查由三棱锥外接球半径,半径与球心位置求解锥体体积最值问题,属于基础题二、填空题:本题共4小题,每小题5分,共20分。13、【解析】

设,判断为偶函数,考虑x>0时,的解析式和零点个数,利用导数分析函数的单调性,作函数大致图象,即可得到的范围.【详解】设,则在是偶函数,当时,,由得,记,,,故函数在增,而,所以在减,在增,,当时,,当时,,因此的图象为因此实数的取值范围是.【点睛】本题主要考查了函数的零点的个数问题,涉及构造函数,函数的奇偶性,利用导数研究函数单调性,考查了数形结合思想方法,以及化简运算能力和推理能力,属于难题.14、【解析】

通过设出A点坐标,可得C点坐标,通过∥轴,可得B点坐标,于是再利用可得答案.【详解】根据题意,可设点,则,由于∥轴,故,代入,可得,即,由于在线段上,故,即,解得.15、【解析】

根据双曲线的标准方程写出双曲线的渐近线方程,结合题意可求得正实数的值.【详解】双曲线的渐近线方程为,由于该双曲线的一条渐近线方程为,,解得.故答案为:.【点睛】本题考查利用双曲线的渐近线方程求参数,考查计算能力,属于基础题.16、【解析】

根据ABCD是平行四边形可得出,然后代入AB=2,AD=1即可求出的值.【详解】∵AB=2,AD=1,∴=1﹣4=﹣1.故答案为:﹣1.【点睛】本题考查了向量加法的平行四边形法则,相等向量和相反向量的定义,向量数量积的运算,考查了计算能力,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、【解析】解:解:将曲线的极坐标方程化为直角坐标方程为,即,它表示以为圆心,2为半径圆,………4分直线方程的普通方程为,………8分圆C的圆心到直线l的距离,……………10分故直线被曲线截得的线段长度为.……………14分18、(1)(2)【解析】

(1)设,根据直线的斜率公式即可求解;(2)设直线的方程为,联立直线与抛物线方程,由韦达定理得,,结合直线的斜率公式得到,换元后讨论的符号,求最值可求解.【详解】(1)设,因为,即直线的斜率为1.(2)显然直线的斜率存在,设直线的方程为.联立方程组,可得则,令,则则当时,;当且仅当,即时,解得时,取“=”号,当时,;当时,综上所述,当时,取得最大值,此时直线的方程是.【点睛】本题主要考查了直线的斜率公式,直线与抛物线的位置关系,换元法,均值不等式,考查了运算能力,属于难题.19、(1)证明见解析(2)【解析】

(1)取的中点,连接,,证明平面得出,再得出;(2)建立空间坐标系,求出平面的法向量,计算,即可得出答案.【详解】(1)证明:取的中点,连接,,,,,,,故,又,,平面,平面,,,分别是,的中点,,.(2)解:四边形是正方形,,又,,平面,平面,在平面内作直线的垂线,以为原点,以,,为所在直线为坐标轴建立空间直角坐标系,则,0,,,1,,,2,,,0,,,1,,,2,,,1,,设平面的法向量为,,,则,即,令可得:,,,,.直线与平面所成角的正弦值为,.【点睛】本题主要考查了线面垂直的判定与性质,考查空间向量与空间角的计算,属于中档题.20、(1)(2)【解析】

(1)设坐标后根据向量的坐标运算即可得到轨迹方程.(2)联立直线和椭圆方程,用坐标表示出,得到,所以,代入韦达定理即可求解.【详解】(1)设,,则,设,由得.又由于,化简得的轨迹的方程为.(2)设直线的方程为,与的方程联立,消去得,,设,,则,,由已知,,则,故直线.,令,则,由于,,.所以,的取值范围为.【点睛】此题考查轨迹问题,椭圆和直线相交,注意坐标表示向量进行转化的处理技巧,属于较难题目.21、(1)(2)当时,,米时,发酵馆的占地面积最小;当时,时,发酵馆的占地面积最小;当时,米时,发酵馆的占地面积最小.【解析】

(1)设米,总费用为,解即可得解;(2)结合(1)可得占地面积结合导函数分类讨论即可求得最值.【详解】(1)由题意知:矩形面积米,设米,则米,由题意知:,得,设总费用为,则,解得:,又,故,所以发酵池边长的范围是不小于15米,且不超过25米;(2)设发酵馆的占地面积为由(1)知:,①时,,在上递增,则,即米时,发酵馆的占地面积最小;②时,,在上递减,则,即米时,发酵馆的占地面积最小;③时,时,,递减;时,递增,因此,即时,发酵馆的占地面积最小;综上所述:当时,,米时,发酵馆的占地面积最小;当时,时,发酵馆的占地面积最小;当时,米时,发酵馆的占地面积最小.【点睛】此题考查函数模型的应用,关键在于根据题意恰当地建立模型,利用函数性质讨论最值取得的情况.22、(1)当时,函数取得极小值为,无极大值;(2)【解析】试题分析:(1),通过求导分析,得函数取得极小值为,无极大值;(2),所以

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论