下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
山东省济南市汇文实验中学2022-2023学年高一数学理月考试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.已知向量、、满足条件=0,||=||=||=1,则△P1P2P3的形状是(
)A.等腰三角形
B.直角三角形
C.等边三角形
D.不能确定参考答案:C略2.使得函数f(x)=lnx+x﹣2有零点的一个区间是()A.(0,1) B.(1,2) C.(2,3) D.(3,4)参考答案:C【考点】函数零点的判定定理.【专题】函数的性质及应用.【分析】由题意可得函数的定义域(0,+∞),令f(x)=lnx+x﹣2,然后根据f(a)?f(b)<0,结合零点判定定理可知函数在(a,b)上存在一个零点,可得结论.【解答】解:由题意可得函数的定义域(0,+∞),令f(x)=lnx+x﹣2∵f(1)=﹣<0,f(2)=ln2﹣1<0,f(3)=ln3﹣>0由函数零点的判定定理可知,函数y=f(x)=lnx+x﹣2在(2,3)上有一个零点故选C.【点评】本题主要考查了函数的零点判定定理的应用,同时考查了运算求解的能力,属于基础题.3.已知a,b,c,d成等比数列,且抛物线
的顶点为(b,c)则ad=
(
)
A.
3
B.
2
C.1
D.-2参考答案:B4.已知全集I={x|x是小于9的正整数},集合M={1,2,3},集合N={3,4,5,6},则()∩N等于A.{3} B.{7,8}C.{4,5,6} D.{4,5,6,7,8}参考答案:C5.若方程在内有解,则的图象是
参考答案:D略6.函数的定义域是()A.B.C.D.参考答案:D7.已知圆C:x2+y2﹣4x=0,l为过点P(3,0)的直线,则() A.l与C相交 B.l与C相切 C.l与C相离 D.以上三个选项均有可能 参考答案:A【考点】直线与圆的位置关系. 【专题】计算题. 【分析】将圆C的方程化为标准方程,找出圆心C坐标和半径r,利用两点间的距离公式求出P与圆心C间的长,记作d,判断得到d小于r,可得出P在圆C内,再由直线l过P点,可得出直线l与圆C相交. 【解答】解:将圆的方程化为标准方程得:(x﹣2)2+y2=4, ∴圆心C(2,0),半径r=2, 又P(3,0)与圆心的距离d==1<2=r, ∴点P在圆C内,又直线l过P点, 则直线l与圆C相交. 故选A. 【点评】此题考查了直线与圆的位置关系,涉及的知识有:圆的标准方程,两点间的距离公式,以及点与圆的位置关系,直线与圆的位置关系由d与r的关系来确定:当d<r时,直线与圆相交;当d=r时,直线与圆相切;当d>r时,直线与圆相离(d表示圆心到直线的距离,r为圆的半径). 8.下列图象中不能作为函数图象的是
(
)参考答案:B略9.若对任意的正数a,b满足,则的最小值为A.6 B.8 C.12 D.24参考答案:C【分析】利用“1”的代换结合基本不等式求最值即可【详解】∵两个正数a,b满足即a+3b=1则=当且仅当时取等号.故选:C【点睛】本题考查了基本不等式求最值,巧用“1”的代换是关键,属于基础题.10.(5分)已知正三棱锥P﹣ABC中,PA=PB=PC=1,且PA,PB,PC两两垂直,则该三棱锥外接球的表面积为() A. B. C. 3π D. 12π参考答案:C考点: 球的体积和表面积;球内接多面体.专题: 空间位置关系与距离.分析: 该三棱锥外接球与以PA,PB,PC为棱长的正方体的外接球的半径相同,正方体的体对角线长等于正方体的外接球的半径,2R==,根据面积公式求解即可.解答: 解;∵正三棱锥P﹣ABC中,PA=PB=PC=1,且PA,PB,PC两两垂直,∴该三棱锥外接球与以PA,PB,PC为棱长的正方体的外接球的半径相同,∴正方体的体对角线长等于正方体的外接球的半径,∴2R==,R=,∴该三棱锥外接球的表面积为4π×()2=3π,故选:C点评: 本题考查了空间几何体的性质,外接球的半径,面积的求解,属于中档题,关键是构造几何体的关系.二、填空题:本大题共7小题,每小题4分,共28分11.如图,已知等腰梯形ABCD中,E是DC的中点,F是线段BC上的动点,则的最小值是_____参考答案:【分析】以中点为坐标原点,建立平面直角坐标系,用解析法将目标式转化为函数,求得函数的值域,即可求得结果.【详解】以中点为坐标原点,建立平面直角坐标系,如下图所示:由题可知,,设,,故可得,则,故可得,因的对称轴,故可得的最小值为.故答案为:.【点睛】本题考查用解析法求向量数量积的最值,涉及动点问题的处理,属综合中档题.12.已知,则的值为______________.参考答案:略13.已知一个球的表面积为,则这个球的体积为
。参考答案:14.若函数f(x)=x2﹣ax+2a﹣4的一个零点在区间(﹣2,0)内,另一个零点在区间(1,3)内,则实数a的取值范围是
.参考答案:(0,2)
【考点】一元二次方程的根的分布与系数的关系.【分析】由条件利用二次函数的性质可得,由此求得a的范围.【解答】解:∵函数f(x)=x2﹣ax+2a﹣4的一个零点在区间(﹣2,0)内,另一个零点在区间(1,3)内,∴,求得0<a<2,故答案为:(0,2).15.若是正常数,,,则,当且仅当时上式取等号.利用以上结论,可以得到函数()的最小值为
.参考答案:25
略16.函数y=log(6+x﹣x2)的单调递增区间为
.参考答案:(,3).【考点】复合函数的单调性.【分析】令t=6+x﹣x2>0,求得函数的定义域,且函数y=t,本题即求二次函数t在定义域内的减区间,再利用二次函数的性值可得结论.【解答】解:令t=6+x﹣x2>0,求得﹣2<x<3,故函数的定义域为{x|﹣2<x<3},且函数y=t,故本题即求二次函数t在定义域内的减区间.再利用二次函数的性值可得二次函数t在定义域内的减区间为(,3),故答案为:(,3).17.数列的前项和,则它的通项公式是__________.参考答案:略三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.(本小题满分12分)已知.(Ⅰ)若,,求的坐标;(Ⅱ)设,若,∥,求点坐标.参考答案:19.(本小题满分14分)已知函数f(x)=(1)判断函数的奇偶性;(2)证明f(x)是R上的增函数。(3)求函数f(x)在[0,1]上的值域参考答案:(1)∵定义域为x,且f(-x)=是奇函数;(2)设x1,x2,且x1<x2,f(x1)-f(x2)=(∵,∴a<a且)∴f(x)是R上的增函数。(3)∵函数f(x)在(-∞,+∞)内是增函数,∴函数f(x)在[0,1]上也是增函数.∴f(x)min=f(0)=0,f(x)max=f(1)=.ks5u∴函数f(x)在[0,1]上的值域为20.已知△ABC的顶点坐标A(5,1),AB边上的中线CM所在直线方程为2x﹣y﹣5=0,AC边上的高BH所在直线方程为x﹣2y﹣5=0,求顶点C的坐标,|AC|的值,及直线BC的方程.参考答案:【考点】IJ:直线的一般式方程与直线的垂直关系.【分析】①令直线AC边所在的直线斜率为k,则k=﹣1,从而直线AC的方程为2x+y﹣11=0.解方程组,能求出顶点C的坐标.②根据两点间的距离公式即可求出;③设点B的坐标为(x0,y0),且点B与点A关于直线2x﹣y﹣5=0对称,又点B在直线BH上,能求出x0=﹣1,y0=﹣3,由两点式,得直线BC的方程.【解答】解:①令直线AC边所在的直线斜率为k,∵AC边上的高BH所在直线方程为x﹣2y﹣5=0,∴k=﹣1,解得k=﹣2,∴直线AC的方程为:y﹣1=﹣2(x﹣5),即,2x+y﹣11=0.∵AB边上的中线CM所在直线方程为2x﹣y﹣5=0,解方程组,得x=4,y=3,∴顶点C的坐标为(4,3).②|AC|==③设点B的坐标为(x0,y0),且点B与点A关于直线2x﹣y﹣5=0对称,∴,又点B在直线BH上,∴x0﹣2y0﹣5=0,∴x0=﹣1,y0=﹣3,所以,由两点式,得直线BC的方程为:,整理,得6x﹣5y﹣9=0.21.如图,在四边形ABCD中,,,.(1)若,求△ABC的面积;(2)若,,求AD的长.参考答案:(1);(2).【分析】(1)由余弦定理求出BC,由此能求出△ABC的面积.(2)设∠BAC=θ,AC=x,由正弦定理得从而,在中,由正弦定理得,建立关于θ的方程,由此利用正弦定理能求出sin∠CAD.再利用余弦定理可得结果.【详解】(1)因为,,,所以,即,所以.所以.(2)设,,则,在中,由正弦定理得:,所以;在中,,所以.即,化简得:,所以,所以,,所以中,.即,解得或(舍).【点睛】本题考查正、余弦定理在解三角形中的应用,考查了引入角的技巧方法,考查运算求解能力,考查函数与方程思想,是中档题.22.(本小题满分12分)已知函数(x?R)(1)求函数f(x)的最大值及此时自变量x的取值集合;(2)求函数f(x)的单调递增区间;(3)求使的x的取值范围.参考答案:解:f(x)=sin2xcos+cos2xsin+sin2xcos-cos2xsin+1+cos2x=2sin2xcos+cos2x+1=sin2x+cos2x+1=2sin(2x+)+1(1)f(x)取得最
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 财务策划咨询合同
- 集装箱货物装卸服务合同
- 外墙乳胶漆销售合同
- 高质量翻译服务合同范例
- 物业服务合同协议书样本
- 绿化植物订购合同
- 高端定制钢琴购买协议
- 综合管理系统购销合同
- 全面服务代理合同
- 智能医疗辅助诊断系统
- SH/T 3065-2024 石油化工管式炉急弯弯管工程技术规范(正式版)
- 2024年《艺术概论》知识考试题库(附答案)
- GB/T 43878-2024旋挖钻机截齿
- 《架空输电线路直升机巡视技术导则》
- 摊位安全责任书
- 《纸质文物修复与保护》课件-03纸质文物病害类型
- 美育的知与行智慧树知到期末考试答案2024年
- 老年患者围术期ERAS护理
- 2024年合肥百姓公共服务云平台有限公司招聘笔试冲刺题(带答案解析)
- 沙门菌感染的人工智能与机器学习应用
- 电气工程及其自动化大学生职业规划
评论
0/150
提交评论