




已阅读5页,还剩11页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
细河区高中2018-2019学年上学期高三数学期末模拟试卷含答案班级_ 座号_ 姓名_ 分数_一、选择题1 若将函数y=tan(x+)(0)的图象向右平移个单位长度后,与函数y=tan(x+)的图象重合,则的最小值为( )ABCD2 已知回归直线的斜率的估计值为1.23,样本点的中心为(4,5),则回归直线方程为( )ABCD =0.08x+1.233 由直线与曲线所围成的封闭图形的面积为( )AB1CD4 若抛物线y2=2px的焦点与双曲线=1的右焦点重合,则p的值为( )A2B2C4D45 设有直线m、n和平面、,下列四个命题中,正确的是( )A若m,n,则mnB若m,n,m,n,则C若,m,则mD若,m,m,则m6 设a,b为实数,若复数,则ab=( )A2B1C1D27 函数在一个周期内的图象如图所示,此函数的解析式为( )A B C D8 设集合,集合,若 ,则的取值范围( )A B C. D9 已知命题p:xR,32x+10,有命题q:0x2是log2x1的充分不必要条件,则下列命题为真命题的是( )ApBpqCpqDpq10在二项式(x3)n(nN*)的展开式中,常数项为28,则n的值为( )A12B8C6D411江岸边有一炮台高30米,江中有两条船,由炮台顶部测得俯角分别为45和30,而且两条船与炮台底部连线成30角,则两条船相距( )A10米B100米C30米D20米12若tan0,则( )Asin0Bcos0Csin20Dcos20二、填空题13已知,与的夹角为,则 14考察正三角形三边中点及3个顶点,从中任意选4个点,则这4个点顺次连成平行四边形的概率等于15若实数满足,则的最小值为 16如图所示是y=f(x)的导函数的图象,有下列四个命题:f(x)在(3,1)上是增函数;x=1是f(x)的极小值点;f(x)在(2,4)上是减函数,在(1,2)上是增函数;x=2是f(x)的极小值点其中真命题为(填写所有真命题的序号)17椭圆C: +=1(ab0)的右焦点为(2,0),且点(2,3)在椭圆上,则椭圆的短轴长为18如果实数满足等式,那么的最大值是 三、解答题19已知z是复数,若z+2i为实数(i为虚数单位),且z4为纯虚数(1)求复数z;(2)若复数(z+mi)2在复平面上对应的点在第四象限,求实数m的取值范围20如图,点A是以线段BC为直径的圆O上一点,ADBC于点D,过点B作圆O的切线,与CA的延长线相交于点E,点G是AD的中点,连接CG并延长与BE相交于点F,延长AF与CB的延长线相交于点P(1)求证:BF=EF;(2)求证:PA是圆O的切线21直三棱柱ABCA1B1C1 中,AA1=AB=AC=1,E,F分别是CC1、BC 的中点,AEA1B1,D为棱A1B1上的点(1)证明:DFAE;(2)是否存在一点D,使得平面DEF与平面ABC所成锐二面角的余弦值为?若存在,说明点D的位置,若不存在,说明理由 22若点(p,q),在|p|3,|q|3中按均匀分布出现(1)点M(x,y)横、纵坐标分别由掷骰子确定,第一次确定横坐标,第二次确定纵坐标,则点M(x,y)落在上述区域的概率?(2)试求方程x2+2pxq2+1=0有两个实数根的概率23(本小题满分10分)选修4-5:不等式选讲已知函数(1)若不等式的解集为,求实数的值;(2)若不等式,对任意的实数恒成立,求实数的最小值24已知函数f(x)=sin(x+)(0,02)一个周期内的一系列对应值如表:x0y101(1)求f(x)的解析式;(2)求函数g(x)=f(x)+sin2x的单调递增区间细河区高中2018-2019学年上学期高三数学期末模拟试卷含答案(参考答案)一、选择题1 【答案】D【解析】解:y=tan(x+),向右平移个单位可得:y=tan(x)+=tan(x+)+k=k+(kZ),又0min=故选D2 【答案】C【解析】解:法一:由回归直线的斜率的估计值为1.23,可排除D由线性回归直线方程样本点的中心为(4,5),将x=4分别代入A、B、C,其值依次为8.92、9.92、5,排除A、B法二:因为回归直线方程一定过样本中心点,将样本点的中心(4,5)分别代入各个选项,只有C满足,故选C【点评】本题提供的两种方法,其实原理都是一样的,都是运用了样本中心点的坐标满足回归直线方程3 【答案】D【解析】由定积分知识可得,故选D。4 【答案】D【解析】解:双曲线=1的右焦点为(2,0),即抛物线y2=2px的焦点为(2,0),=2,p=4故选D【点评】本题考查双曲线、抛物线的性质,考查学生的计算能力,属于基础题5 【答案】D【解析】解:A不对,由面面平行的判定定理知,m与n可能相交,也可能是异面直线;B不对,由面面平行的判定定理知少相交条件;C不对,由面面垂直的性质定理知,m必须垂直交线;故选:D6 【答案】C【解析】解:,因此ab=1故选:C7 【答案】B【解析】考点:三角函数的图象与性质8 【答案】A【解析】考点:集合的包含关系的判断与应用.【方法点晴】本题主要考查了集合的包含关系的判定与应用,其中解答中涉及到分式不等式的求解,一元二次不等式的解法,集合的子集的相关的运算等知识点的综合考查,着重考查了转化与化归思想、分类讨论思想的应用,以及学生的推理与运算能力,属于中档试题,本题的解答中正确求解每个不等式的解集是解答的关键.9 【答案】C【解析】解:命题p:xR,32x+10,命题p为真,由log2x1,解得:0x2,0x2是log2x1的充分必要条件,命题q为假,故选:C【点评】本题考查了充分必要条件,考查了对数,指数函数的性质,是一道基础题10【答案】B【解析】解:展开式通项公式为Tr+1=(1)rx3n4r,则二项式(x3)n(nN*)的展开式中,常数项为28,n=8,r=6故选:B【点评】本题主要考查二项式定理的应用,二项式系数的性质,二项式展开式的通项公式,求展开式中某项的系数,属于中档题11【答案】C【解析】解:如图,过炮台顶部A作水平面的垂线,垂足为B,设A处观测小船C的俯角为45,设A处观测小船D的俯角为30,连接BC、BDRtABC中,ACB=45,可得BC=AB=30米RtABD中,ADB=30,可得BD=AB=30米在BCD中,BC=30米,BD=30米,CBD=30,由余弦定理可得:CD2=BC2+BD22BCBDcos30=900CD=30米(负值舍去)故选:C【点评】本题给出实际应用问题,求炮台旁边两条小船距的距离着重考查了余弦定理、空间线面的位置关系等知识,属于中档题熟练掌握直线与平面所成角的定义与余弦定理解三角形,是解决本题的关键12【答案】C【解析】解:tan0,则sin2=2sincos0故选:C二、填空题13【答案】【解析】解析:本题考查向量夹角与向量数量积的应用与的夹角为,14【答案】 【解析】解:从等边三角形的三个顶点及三边中点中随机的选择4个,共有=15种选法,其中4个点构成平行四边形的选法有3个,4个点构成平行四边形的概率P=故答案为:【点评】本题考查古典概型及其概率计算公式的应用,是基础题确定基本事件的个数是关键15【答案】5【解析】考点:利用导数求最值【方法点睛】利用导数解答函数最值的一般步骤:第一步:利用f(x)0或f(x)0求单调区间;第二步:解f(x)0得两个根x1、x2;第三步:比较两根同区间端点的大小;第四步:求极值;第五步:比较极值同端点值的大小16【答案】 【解析】解:由图象得:f(x)在(1,3)上递减,在(3,1),(3,+)递增,f(x)在(3,1)上是增函数,正确,x=3是f(x)的极小值点,不正确;f(x)在(2,4)上是减函数,在(1,2)上是增函数,不正确,故答案为:17【答案】 【解析】解:椭圆C: +=1(ab0)的右焦点为(2,0),且点(2,3)在椭圆上,可得c=2,2a=8,可得a=4,b2=a2c2=12,可得b=2,椭圆的短轴长为:4故答案为:4【点评】本题考查椭圆的简单性质以及椭圆的定义的应用,考查计算能力18【答案】【解析】 考点:直线与圆的位置关系的应用. 1【方法点晴】本题主要考查了直线与圆的位置关系的应用,其中解答中涉及到点到直线的距离公式、直线与圆相切的判定与应用,着重考查了学生分析问题和解答问题的能力,以及推理与运算能力和转化与化归的思想方法,本题的解答中把的最值转化为直线与圆相切是解答的关键,属于中档试题.三、解答题19【答案】 【解析】解:(1)设z=x+yi(x,yR)由z+2i=x+(y+2)i为实数,得y+2=0,即y=2由z4=(x4)+yi为纯虚数,得x=4z=42i(2)(z+mi)2=(m2+4m+12)+8(m2)i,根据条件,可知 解得2m2,实数m的取值范围是(2,2)【点评】本题考查了复数的运算法则、纯虚数的定义、几何意义,属于基础题20【答案】 【解析】证明:(1)BC是圆O的直径,BE是圆O的切线,EBBC又ADBC,ADBE可得BFCDGC,FECGAC,得G是AD的中点,即DG=AGBF=EF(2)连接AO,ABBC是圆O的直径,BAC=90由(1)得:在RtBAE中,F是斜边BE的中点,AF=FB=EF,可得FBA=FAB又OA=OB,ABO=BAOBE是圆O的切线,EBO=90,得EBO=FBA+ABO=FAB+BAO=FAO=90,PAOA,由圆的切线判定定理,得PA是圆O的切线【点评】本题求证直线是圆的切线,着重考查了直角三角形的性质、相似三角形的判定与性质和圆的切线判定定理等知识,属于中档题21【答案】【解析】(1)证明:AEA1B1,A1B1AB,AEAB,又AA1AB,AA1AE=A,AB面A1ACC1,又AC面A1ACC1,ABAC,以A为原点建立如图所示的空间直角坐标系Axyz,则有A(0,0,0),E(0,1,),F(,0),A1(0,0,1),B1(1,0,1),设D(x,y,z),且,即(x,y,z1)=(1,0,0),则 D(,0,1),所以=(,1),=(0,1,),=0,所以DFAE; (2)结论:存在一点D,使得平面DEF与平面ABC所成锐二面角的余弦值为理由如下:设面DEF的法向量为=(x,y,z),则,=(,),=(,1),即,令z=2(1),则=(3,1+2,2(1)由题可知面ABC的法向量=(0,0,1),平面DEF与平面ABC所成锐二面角的余弦值为,|cos,|=,即=,解得或(舍),所以当D为A1B1中点时满足要求【点评】本题考查空间中直线与直线的位置关系、空间向量及其应用,建立空间直角坐标系是解决问题的关键,属中档题22【答案】 【解析】解:(1)根据题意,点(p,q),在|p|3,|q|3中,即在如图的正方形区域,其中p、q都是整数的点有66=36个,点M(x,y)横、纵坐标分别由掷骰子确定,即x、y都是整数,且1x3,1y3,点M(x,y)落在上述区域有(1,1),(1,2),(1,3),(2,1),(2,2),(2,3),(3,1),(3,2),(3,3),有9个点,所以点M(x,y)落在上述区域的概率P1=;(2)|p|3,|q|3表示如图的正方形区域,易得其面积为36;若方程x2+2pxq2+1=0有两个实数根,则有=(2p)24(q2+1)0,解可得p2+q21,为如图所示正方形中圆以外的区域,其面积为36,即方程x2+2pxq2+1=0有两个实数根的概率,P2=【点评】本题考查几何概型、古典概型的计算,解题时注意区分两种概率的异同点23【答案】【解析】【命题意图】本题主要考查绝对值不等式的解法、三角不等式、基本不等式等基础知识,以及考查等价转化的能力、逻辑思维能力、运算能力24【答案】 【解析】(本题满分1
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 人力资源公司劳务合作合同模板
- 采购地源热泵的合同模板
- 小学信息技术第三册 学生机器人1选修教学设计 苏科版
- 小学数学人教版(2024)五年级上册一个数除以小数获奖教学设计及反思
- 专卖店合同样本集萃
- 供应链合同廉洁合作承诺书
- 小学数学北师大版三年级下册分一分(二)第4课时教学设计
- 2024年04月河南省鹤壁市事业单位联考招聘275人笔试历年专业考点(难、易错点)附带答案详解
- 森林改培与森林质量提升考核试卷
- 眼镜连锁经营管理策略考核试卷
- 《园林景观手绘技法表现》课件-项目2 景观元素的表现技法
- 社会福利 课件汇 高和荣 第1-5章 绪论- 社会福利主体
- 治疗室换药室消毒管理制度
- 2025版轮胎进出口贸易与代理服务合同范本4篇
- 2024年开封大学高职单招职业技能测验历年参考题库(频考版)含答案解析
- 危险化学品购销的合同范本
- 实时荧光聚合酶链反应临床实验室应用指南(WST-230-2024)
- 口腔医院市场营销新入职员工培训
- 瑞幸咖啡副店长认证考试题库
- 2024年生鲜配送与城市社区团购合作框架协议3篇
- 2024年出版专业资格考试《出版专业基础知识》中级真题及答案
评论
0/150
提交评论