高中数学 2.3.1平面向量基本原理学案苏教版必修_第1页
高中数学 2.3.1平面向量基本原理学案苏教版必修_第2页
高中数学 2.3.1平面向量基本原理学案苏教版必修_第3页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、231 平面向量基本原理【学习目标】1 了解平面向量的基本定理及其意义;2 掌握三点(或三点以上)的共线的证明方法:3 提高学生分析问题、解决问题的能力。【预习指导】1、平面向量的基本定理如果,是同一平面内两个不共线的向量,那么对于这一平面内的任一向量,有且只有一对实数,使=+2.、基底:平面向量的基本定理中的不共线的向量, ,称为这一平面内所有向量的一组基底。思考:(1) 向量作为基底必须具备什么条件?(2) 一个平面的基底唯一吗?答:(1)_ (2)_3、向量的分解、向量的正交分解:一个平面向量用一组基底 , 表示成=+的形式,我们称它为向量的分解,当, 互相垂直时,就称为向量的正交分解。

2、4、 点共线的证明方法:_ 【典例选讲】例1:如图:平行四边形ABCD的对角线AC和BD交于一点M , = , =试用 ,,表示 , , 和 。 D C M A B 例2: 设 , 是平面的一组基底,如果 =3 2 , =4 + ,=8 9,求证:A、B、D三点共线。例3: 如图,在平行四边形ABCD中,点 M在 AB的延长线上,且 BM=AB,点N 在 BC上,且BN=BC ,用向量法证明: M、N、D 三点共线。 D C N A B M【课堂练习】1、若,是平面内所有向量的一组基底,则下面的四组向量中不能作为一组基底的( )A、 2 和+2B 、与3C、2+3和 - 46D、+与2、若,是平面内所有向量的一组基底,那么下列结论成立的是( )A、若实数,使+=0,则=0B、空间任意向量都可以表示为=+,RC、+,R不一定表示平面内一个向量D、对于这一平面内的任一向量 ,使=+的实数对,有无数对3、三角形ABC中,若 D,E,F 依次是 四等分点,则以 = ,= 为基底时,用 ,表示 B F E D A C4、若= -+

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论