版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、数学归纳法是用来证明某些与 有关的数学命题的 一种方法 基本步骤: 证明:当 时,命题成立; 假设 时命题成立, 证明:当 时,命题成立 根据可以断定命题对一切正整数nn0都成立,数学归纳法部分,1数学归纳法,正整数,2数学归纳法证明步骤,nn0,nk (k n0),nk1,1.说明:归纳法是一种推理方法,数学归纳法是一种证明方法归纳法帮助我们提出猜想,而数学归纳法的作用是证明猜想“观察猜想证明”是解答与正整数有关命题的有效途径,利用数学归纳法证明的命题范围比较广泛,可以涵盖代数、三角恒等式、不等式、数列、几何问题、整除性问题等等,所涉及的题型主要有以下几个方面: (1)已知数列的递推公式,求
2、通项或前n项和; (2)由一些恒等式、不等式改编的探究性问题,求使命题成立的参数的值或范围; (3)猜想并证明对正整数n都成立的一般性命题,2.数学归纳法的主要应用,(1)用数学归纳法证明的对象是与正整数n有关的命题 (2)在用数学归纳法证明中,两个基本步骤缺一不可,3应用数学归纳法的注意事项,【例1】 用数学归纳法证明:1427310n(3n 1)n(n1)2(其中nN) ,题型一恒等式问题,(1)当n1时,左边144,右边1224,左边右边,等式成立 (2)假设当nk(kN,k1)时等式成立,即1427310k(3k1)k(k1)2, 那么,当nk1时, 1427310k(3k1)(k1)
3、3(k1)1 k(k1)2(k1)3(k1)1(k1)(k24k4)(k1)(k1)12, 即当nk1时等式也成立 根据(1)和(2),可知等式对任何nN都成立,证明,用数学归纳法证明与正整数有关的等式命题时,关键在于“先看项”,弄清等式两边的构成规律,等式的两边各有多少项,项的多少与n的取值是否有关,由nk到nk1时,等式两边会增加多少项难点在于寻找nk时和nk1时的等式的联系,【例2】 几个半圆的圆心在同一条直线l上,这几个半圆每两个 都相交,且都在直线l的同侧,求证这些半圆被所有的交点 最多分成的圆弧段数为f(n)n2.(n2,nN),题型二几何问题,用数学归纳法证明几何问题的关键是“找
4、项”,即几何元素从k个变成k1个时,所证的几何量将增加多少,这需用到几何知识或借助于几何图形来分析,实在分析不出来的情况下,将nk1和nk分别代入所证的式子,然后作差,即可求出增加量,然后只需稍加说明即可,这也是用数学归纳法证明几何命题的一大技巧,题型三不等式问题,【例4】 (12分)在数列an,bn中,a12,b14,且an, bn,an1成等差数列,bn,an1,bn1成等比数列(nN) 求a2,a3,a4及b2,b3,b4,由此猜测an,bn的通项公 式,并证明你的结论 归纳猜想证明是高考重点考查的内容之一, 此类问题可分为归纳性问题和存在性问题,本例中归纳性问 题需要从特殊情况入手,通
5、过观察、分析、归纳、猜想,探 索出一般规律,题型四“归纳、猜想、证明”问题,审题指导,【题后反思】 对于已知递推公式求通项公式,可以把递推公式变形转化成我们熟悉的知识来解决,当用上述方法不能解决问题时,常用归纳、猜想和证明的方法来解决问题,用该法要求计算准确,归纳、猜想正确然后用数学归纳法证明猜想对任何自然数都成立,【训练4】 设数列an满足an1an2nan1,n1,2,3, (1)当a12时,求a2,a3,a4,并由此猜想出an的一个通项 公式; (2)当a13时,证明对所有的n1,有ann2. (3)在(2)的前提下,证明:,(2)证明当n1时,a1312,不等式成立 假设当nk(k1)
6、时不等式成立,即akk2, 那么,ak1ak(akk)1(k2)(k2k)1k3. 即nk1时,ak1(k1)2. 由可知,对n1,都有ann2. (3)证明(略)学生证自己证,【示例】 当n为正奇数时,7n1能否被8整除?若能,用数学归 纳法证明;若不能,请举出反例 错解 (1)当n1时,718能被8整除命题成立 (2)假设当nk时命题成立,即7k1能被8整除则当nk1 时,7k117(7k1)6不能被8整除 由(1)和(2)知,n为正奇数时,7n1不能被8整除,题型五 整除问题,不要机械套用数学归纳法中的两个步骤,而忽略了n是正奇数的条件证明前要看准已知条件 正解 (1)当n1时,718能被8整除,命题成立; (2)假设当nk时命题成立,即7k1能被8整除, 则当nk2时,7k2172(7k1)17249(7k1)48,因为7k1能被8整除,且48能被8整除,所以7k21能被8整除所以当nk2时命题成立由(
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《解读学习金字塔》课件
- 【大学课件】危害公共安全罪
- 《计算机安全概述》课件
- 肤色暗黄的临床护理
- 孕期同房出血的健康宣教
- 《机械设计基础》课件-第11章
- 孕期胸痛的健康宣教
- 喉插管损伤的健康宣教
- 孕期痤疮的健康宣教
- JJF(陕) 073-2021 路面材料强度试验仪校准规范
- 农村土地流转审查备案表(双方自愿达成协议)(共2页)
- 小学英语社团教案(共19页)
- 工作文档有关于恐龙的资料以及有关于图片的资料
- 聚氨酯类型与使用范围
- 护理质控检查表
- 0-15V直流稳压电源设计
- 某高速公路路面改建工程施工监理投标文件报价表
- 推荐NDI颈部残疾指数评分量表
- 买卖合同民事起诉状模板
- 课题结题汇报PPT
- 水轮发电机组启动试验规程
评论
0/150
提交评论