




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
JETSON
PLATFORMJetson
SA:
Alan
ZhangApril
24,20202Jetson
product
andmarketingWhy
weneed
crosscompileHow
to
setup
the
cross-compile
environmentConfig
directly
via
the
environment
variable.Config
in
Makefile.Build
your
simulation.Compile
on
X86
host
and
execute
on
JetsonCross
compile
Linux
kernel.Cross
compile
CUDA
project.Cross
compile
Multi
Media
API
based
application.Cross
compile
Deepstream.Cross
compile
CaffeCross
compile
OpenCV.Where
canI
get
the
prebuild
version
and
how
to
build
onjetson?AGENDA3NVIDIA
JETSONSoftware-Defined
AI
PlatformAI
atthe
EdgeSensor
Fusion
&
Compute
PerformanceECOSYSTEMExpertise,
Time
to
MarketJETSON
COMPUTERSOFTWARE
DEFINEDSDK,
Design
Tools,
Libs,
GEMsJetpack
SDK
∙
CUDA
∙
TensorRT
∙
TensorFlow
∙
ONMX
∙
ROSArtificial
IntelligenceComputer
VisionAcceleratedComputingMultimediaGesture
recObj
detectPath
planningDepth
estPose
estSpeech
recActSenseReasonINTELLIGENT
VIDEO
ANALYTICS
FOREFFICIENCY
AND
SAFETYJETSON
ROBOTICS
&
LOGISTICIndustrialAerospace/DefenseHealthcareConstructionAgricultureSmart
CityInspectionServiceRetailLogisticsCollaborationDeliveryTHE
JETSON
FAMILYfor
AI
at
the
Edge
and
Autonomous
SystemdesignsSame
softwareListed
prices
are
for
1000u+
|
Full
specs
at
/jetson*
TX2i:
10-20W7.5
–
15W*50mm
x
87mmJETSON
TX2series1.3
TFLOPS
(FP16)5
-
10W45mm
x
70mmJETSON
NANO0.5
TFLOPS
(FP16)10
–
30W100mm
x
87mmJETSON
AGXXAVIER
series11
TFLOPS
(FP16)32
TOPS(INT8)10
-
15W45mm
x
70mmJETSON
Xavier
NX6
TFLOPS
(FP16)21
TOPS(INT8)AI
at
the
edgeFully
autonomous
machinesJetson
AGX
Xavier
DeveloperKitDeveloper
Kit
User
GuideL4T
DocumentationModule
DatasheetOEM
Design
GuideJetson
TX2
DeveloperKitDeveloper
Kit
User
GuideL4T
DocumentationModule
DatasheetOEM
Design
GuideJetson
Nano
DeveloperKitGetting
StartedDeveloper
Kit
User
GuideL4T
DocumentationJETSONNANOJETSON
TX2JETSON
XAVIER
NXJETSON
AGX
XAVIERGPU128
Core
Maxwell0.5
TFLOPs
(FP16)256
Core
Pascal1.3
TFLOPS
(FP16)384
Core
Volta21
TOPs
(INT8)512
Core
Volta
+
NVDLA10
TFLOPS
(FP16)32
TOPS
(INT8)CPU4
core
ARM
A576
coreDenver
and
A57(2x)
2MB
L26
core
Carmel
ARM
CPU(3x)
2MB
L2
+
4MB
L38
coreCarmel
ARM
CPU(4x)
2MB
L2
+
4MB
L3Memory4
GB64-bit
LPDDR425.6
GB/sUp
to
8
GB128b
LPDDR458
GB/s8
GB128-bit
LPDDR4x51.2
GB/sUp
to
32GB
256-bitLPDDR4x137
GB/sStorage16
GBeMMCUp
to
32
GBeMMC16
GBeMMC32
GBeMMCEncode4K
@30
(H.265)4K
@
60
(H.265)2x
4K
@
30(H.265)4x
4K
@
60(H.265)Decode4K
@
60
(H.265)2x
4K
@
60
(H.265)2x
4K
@
60
(H.265)6x
4K
@
60(H.265)Camera12
(3x4
or
4x2)
MIPI
CSI-2
D-PHY
1.1
lanes
(18Gbps)12
lanes
MIPICSI-2D-PHY
1.2
(30
Gbps)C-PHY
(41
Gbps)12
lanes
(3x4
or
6x2)MIPI
CSI-2D-PHY
1.2
(30
Gbps)16
lanes
MIPI
CSI-2
|
8lanes
SLVS-ECD-PHY
(40
Gbps)C-PHY
(59
Gbps)Mechanical69.6mm
x
45mm260
pin
edge
connector87mm
x
50mm400
pin
connector69.6mm
x
45mm260
pin
edge
connector100mm
x
87mm699
pin
connectorSoftwareJetPack
SDK
–
Unified
software
release
across
all
Jetson
productsJETSONSOFTWARENsight
Developer
ToolsJetsonDeepStream
&
Isaac
SDKsModulesDepthestimationPathplanningObjectdetectionGesturerecognitionEcosystemmodulesPoseestimation…CUDA
•
Linux
•
RTOSlibargusVideo
APIMultimediaVisionWorksOpenCVComputer
VisionTensorRTcuDNNDeep
LearningSensorsDriversEcosystemAccelerated
ComputingcuBLAScuFFTJetson
software:
/jetsonJetPack
SDKCUDA-X10Jetson
product
andmarketingWhy
weneed
crosscompileHow
to
setup
the
cross-compile
environmentConfig
directly
via
the
environment
variable.Config
in
Makefile.Build
your
simulation.Compile
on
X86
host
and
execute
on
JetsonCross
compile
Linux
kernel.Cross
compile
CUDA
project.Cross
compile
Multi
Media
API
based
application.Cross
compile
Deepstream.Cross
compile
CaffeCross
compile
OpenCV.Where
canI
get
the
prebuild
version
and
how
to
build
onjetson?AGENDAARCHITECTURES
&
INSTRUCTION
SETSHow
compile
works11ARCHITECTURES
&
INSTRUCTION
SETSNative
compile
and
cross
copile12ARCHITECTURES
&
INSTRUCTION
SETS13What
can
we
benefit
from
crosscompileSpeedTarget
platform
usually
designed
to
have
low
cost
and
low
power
consumption.
So
the
speed
ofthe
CPU
will
be
not
good
at
compiling.CapabilityTarget
platform
have
less
storage
and
less
memory
to
sustain
running
a
big
project.AvailabilityNot
all
the
system
for
target
platform
has
the
resources
to
support
compilenatively.FlexibilityA
complete
build
environment
need
lots
of
the
software
to
support.14Jetson
product
andmarketingWhy
weneed
crosscompileHow
to
setup
the
cross-compile
environmentConfig
directly
via
the
environment
variable.Config
in
Makefile.Build
your
simulation.Compile
on
X86
host
and
execute
on
JetsonCross
compile
Linux
kernel.Cross
compile
CUDA
project.Cross
compile
Multi
Media
API
based
application.Cross
compile
Deepstream.Cross
compile
CaffeCross
compile
OpenCV.Where
canI
get
the
prebuild
version
and
how
to
build
onjetson?AGENDANVIDIA®
specifies
the
Linaro®
gcc
7.3.1
2018.05
aarch64
toolchain
for:Cross-compiling
applications
torun
onJetson
Linux
Driver
Package
(L4T
rel-32.Cross-compiling
code
in
the
L4T
rel-32
source
release.This
topic
describes
how
toobtain
this
toolchain.ToolchainInformationThe
toolchain
contains
the
following
components:GCC
version:
7.3.1Binutils
version:
0170706Glibc
version:
2.25Downloading
the
ToolchainDownload
the
pre-built
toolchain
binaries
from:/components/toolchain/binaries/7.3-2018.05/aarch64-linux-gnu/gcc-linaro-7.3.1-2018.05-
x86_64_aarch64-linux-gnu.tar.xzExtracting
the
ToolchainExecute
the
following
commands
to
extract
thetoolchain:$
mkdir
$HOME/l4t-gcc$cd
$HOME/l4t-gcc$
tar
xf
gcc-linaro-7.3.1-2018.05-x86_64_aarch64-linux-gnu.tar.xzSETUP
THE
CROSS
COMPILEDowload
the
toolchainSETUP
THE
CROSS
COMPILE16export
CROSS_ROOT=/home/alan/rootfs-nanoexport
CROSS_COMPILE
=
/home/alan/toolchain/gcc-4.8.5-aarch64/binexport
CC
=
${CROSS_COMPILE}/aarch64-unknown-linux-gnu-gccexport
CXX
=
${CROSS_COMPILE}/aarch64-unknown-linux-gnu-g++export
LD
=
${CROSS_COMPILE}/aarch64-unknown-linux-gnu-ldexport
AR
=
${CROSS_COMPILE}/aarch64-unknown-linux-gnu-arexport
AS
=
${CROSS_COMPILE}/aarch64-unknown-linux-gnu-asexport
RANLIB
=
${CROSS_COMPILE}/aarch64-unknown-linux-gnu-ranlibexport
NVCC
=${CROSS_ROOT}/usr/local/cuda/bin/nvccexport
LD_LIBRARY_PATH=$LD_LIBRARY_PATH:$SYSROOT/usr/lib/aarch64-linux-gnu:$SYSROOT/lib/aarch64-linux-gnu:$SYSROOT/libexport
LC_ALL=Cexport
LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/home/alan/toolchain/gcc-4.8.5-aarch64/aarch64-unknown-linux-gnu/lib64:/home/alan/toolchain/gcc-4.8.5-aarch64/aarch64-unknown-linux-gnu/sysroot/libOptions
1:Options
2:17$
sudo
apt
update$
sudoapt
installnfs-kernel-server$
sudo
vim/etc/exports/
*(rw,sync,no_subtree_check,
no_root_squash)$
sudo
exportfs
–a$
sudo
systemctl
restart
nfs-kernel-server.service$
sudoexportfs/
(world)18Setupthe
NFS
on
Jetson$
sudo
apt
update$
sudo
apt
install
nfs-common$
sudo
mkdir
–p/mnt/rootfs$
sudo
/etc/fstab:/
/mnt/rootfs
nfs
defaults
0
0$
sudo
mount
–t
nfs
:/
/mnt/rootfs$
ls/mnt/rootfs/Setupthe
NFS
on
Host19Chroot
&
Qeum•••Options
3:20Chroot
&
Qeum/2122Jetson
product
andmarketingWhy
weneed
crosscompileHow
to
setup
the
cross-compile
environmentConfig
directly
via
the
environment
variable.Config
in
Makefile.Build
your
simulation.Compile
on
X86
host
and
execute
on
JetsonCross
compile
Linux
kernel.Cross
compile
CUDA
project.Cross
compile
Multi
Media
API
based
application.Cross
compile
Deepstream.Cross
compile
CaffeCross
compile
OpenCV.Where
canI
get
the
prebuild
version
and
how
to
build
onjetson?AGENDA/jetson/l4t-multimedia/cross_platform_support.htmlCross
compile
the
Kernel$
green@C
~/nvidia/nvidia_sdk/sources/kernel/kernel-4.9
$
git
tag
–l/jetson/l4t/index.htmlCross
compile
the
Kernel$
green@C
~/nvidia/nvidia_sdk/sources/kernel/kernel-4.9
$
./source_sync.sh
-t
tegra-l4t-r32.3.1/jetson/l4t/index.htmlCross
compile
the
Kernelgreen@C
~/nvidia/nvidia_sdk/sources
$
lshardware
kernel
u-bootgreen@C
~/nvidia/nvidia_sdk/sources
$
cd
kernel/kernel-4.9/green@C
~/nvidia/nvidia_sdk/sources/kernel/kernel-4.9
$export
ARCH=arm64export
CROSS_COMPILE=${HOME}/Downloads/toolchain/gcc-linaro-7.3.1-2018.05-x86_64_aarch64-linux-gnu/bin/aarch64-linux-gnu-export
LOCALVERSION=-tegranvidia@nvidia-desktop:/usr/local/cuda/samples$
uname
-aLinux
nvidia-desktop
4.9.140-tegra
#1
SMP
PREEMPT
Mon
Dec
9
22:52:02
PST
2019
aarch64
aarch64
aarch64
GNU/Linux$
wget
/components/toolchain/binaries/7.3-2018.05/aarch64-linux-gnu/gcc-linaro-
7.3.1-2018.05-x86_64_aarch64-linux-gnu.tar.xzCross
compile
the
KernelJetson:nvidia@nvidia-desktop:/usr/local/cuda/samples$sudo
cp
/proc/config.gz
/[sudo]
password
for
nvidia:nvidia@nvidia-desktop:/usr/local/cuda/samples$X86Host:green@C
~/nvidia/nvidia_sdk/sources/kernel/kernel-4.9$
sudo
gzip
-d
/mnt/rootfs/config.gzgreen@C
~/nvidia/nvidia_sdk/sources/kernel/kernel-4.9
$
cp
/mnt/rootfs/config
.'/mnt/rootfs/config'
->
'./config'removed
'./config'green@C
~/nvidia/nvidia_sdk/sources/kernel/kernel-4.9$
cp
config
.config'config'
->'.config'green@C
~/nvidia/nvidia_sdk/sources/kernel/kernel-4.9
$
make
menuconfigscripts/kconfig/mconf
KconfigMake–j8/jetson/l4t/index.htmlGet
the
config
fileKERNEL
CROSS
COMPILE28green@C
~/nvidia/nvidia_sdk/sources/kernel/kernel-4.9
$
cp
arch/arm64/boot/Image
/mnt/rootfs/boot/export
TARGET_ROOTFS=/mnt/rootfssudo
ln
-sf
/mnt/rootfs/usr/lib/aarch64-linux-gnu
/usr/lib/aarch64-linux-gnusudo
ln
-sf
/usr/lib/aarch64-linux-gnu/libpthread.so
/lib/libpthread.so.0sudo
ln
-sf
/mnt/rootfs/lib/aarch64-linux-gnu
/lib/aarch64-linux-gnusudo
ln
-sf
/mnt/rootfs/lib/aarch64-linux-gnu/libc.so.6
/lib/libc.so.6sudo
ln-sf
/mnt/rootfs/usr/lib/aarch64-linux-gnu/libc_nonshared.a
/usr/lib/libc_nonshared.asudo
ln
-sf
/lib/aarch64-linux-gnu/ld-2.27.so/lib/ld-linux-aarch64.so.129Cross
compile
Multi
Media
API/nvidia-jetson-linux-multimediaapireferencegreen@C
~/Downloads/nvidia/sdkm_downloads/tegra_multimedia_api
$
git
diffdiff
--git
a/samples/Rules.mk
b/samples/Rules.mkindex
7977ab1..6dd362d
100644
a/samples/Rules.mk+++
b/samples/Rules.mk@@
-76,7
+76,7
@@
NM =
$(AT)
$(CROSS_COMPILE)nm30=
$(AT)
$(CROSS_COMPILE)strip=
$(AT)
$(CROSS_COMPILE)objcopy=
$(AT)
$(CROSS_COMPILE)objdumpSTRIPOBJCOPYOBJDUMP-NVCC+NVCC=
$(AT)
$(CUDA_PATH)/bin/nvcc-ccbin
$(filter-out
$(AT),
$(CPP))=
$(AT)
$(TARGET_ROOTFS)$(CUDA_PATH)/bin/nvcc-ccbin
$(filter-out
$(AT),
$(CPP))#
Specify
the
logical
root
directory
for
headers
andlibraries.ifneq
($(TARGET_ROOTFS),)@@
-96,7
+96,8
@@
CPPFLAGS
+=
-std=c++11
\-I"$(ALGO_TRT_DIR)"
\-I"$(TARGET_ROOTFS)/$(CUDA_PATH)/include"
\-I"$(TARGET_ROOTFS)/usr/include/$(TEGRA_ARMABI)"
\++- -I"$(TARGET_ROOTFS)/usr/include/libdrm"-I"$(TARGET_ROOTFS)/usr/include/libdrm"
\-I"$(TARGET_ROOTFS)/usr/include/opencv4"#
All
common
dependent
librariesLDFLAGS
+=
\/nvidia-jetson-linux-multimediaapireferenceCross
compile
Multi
Media
APICross
compile
Multi
MediaAPI/nvidia-jetson-linux-multimediaapireference31Torun$
./video_dec_trt2
../../data/Video/sample_outdoor_car_1080p_10fps.h264../../data/Video/sample_outdoor_car_1080p_10fps.h264
H264 --trt-deployfile../../data/Model/resnet10/totxt --trt-modelfile
../../data/Model/resnet10/resnet10.caffemodelmode0--trt-Cross
compile
Multi
MediaAPI/nvidia-jetson-linux-multimediaapireference32Example$
./backend
1
../../data/Video/sample_outdoor_car_1080p_10fps.h264H264 --trt-deployfile../../data/Model/GoogleNet_one_class/GoogleNet_modified_oneClass_halfHD.prototxt --trt-modelfile../../data/Model/GoogleNet_one_class/GoogleNet_modified_oneClass_halfHD.caffemodel
--trt-mode
0
--trt-proc-interval
1
-fps
10Cross
compile
Multi
MediaAPI/nvidia-jetson-linux-multimediaapireference33export
TARGET_ROOTFS=/mnt/rootfsexport
CUDA_VER=10.0Cross
compile
Deepstream34Copy
the
model's
label
file"ssd_coco_labels.txt"
fromthe
data/ssd
directoryin
TensorRT
samples
to
this
directory.Steps
to
generate
the
UFF
model
from
ssd_inception_v2_coco
TensorFlowfrozengraph.
These
steps
have
been
referred
from
TensorRT
sampleUffSSD
README:Make
sure
TensorRT's
uff-converter-tf
package
is
installed.Installtensorflow-gpu
package
for
python:For
dGPU:$pip
installtensorflow-gpuFor
Jetson,
refer
to
/Jetson_Zoo#TensorFlowDownload
and
untar
the
ssd_inception_v2_coco
TensorFlow
trained
model
from/models/object_detection/ssd_inception_v2_coco_2017_11_17.tar.gz354.
Navigate
to
the
extracted
directory
and
convert
the
frozen
graph
to
uff:$
cdssd_inception_v2_coco_2017_11_17$
python
/usr/lib/python2.7/dist-packages/uff/bin/convert_to_uff.py
\frozen_inference_graph.pb
-O
NMS
\-p
/usr/src/tensorrt/samples/sampleUffSSD/config.py
\-o
sample_ssd_relu6.uff5.
Copy
sample_ssd_relu6.uff
to
thisdirectory.Pre-requisites
for
SSDOn
the
Host:#cd
/mnt/rootfs/home/nvidia/deepstream/deepstream-4.0/sources/objectDetector_SSD/nvdsinfer_custom_impl_ssd/ssd_inception_v2_coco_2017_11_17#
python
/usr/lib/python3.6/dist-packages/uff/bin/convert_to_uff.py/mnt/rootfs/home/nvidia/deepstream/deepstream-4.0/sources/objectDetector_SSD/nvdsinfer_custom_impl_ssd/ssd_inception_v2_coco_2017_11_17/frozen_inference_graph.pb
-O
NMS
-p
/usr/src/tensorrt/samples/sampleUffSSD/config.py-o/mnt/rootfs/home/nvidia/deepstream/deepstream-4.0/sources/objectDetector_SSD/sample_ssd_relu6.uff#
cd
/mnt/rootfs/home/nvidia/deepstream/deepstream-4.0/sources/objectDetector_SSD/#
cp
/usr/src/tensorrt/data/ssd/ssd_coco_labels.txt
.On
the
Jetson:#
export
DISPLAY=:0#
deepstream-app
-c
deepstream_app_config_ssd.txt36Cross
compile
DeepstreamCross
compile
DeepStream37Cross
compile
DeepStream#
cd/mnt/rootfs/home/nvidia/deepstream/deepstream-4.0/sources/apps/sample_apps/deepstream-segmentation-test#
make38Cross
compile
DeepStreamOn
Jetson#
./deepstream-segmentation-appdstest_segmentation_config_semantic.txtsample_720p.mjpeg
sample_720p.mjpeg39SETUP
THE
CROSS
COMPILE40export
TARGET_ROOTFS=/mnt/rootfsexport
CROSS_COMPILE=${HOME}/Downloads/toolchain/gcc-linaro-7.3.1-2018.05-x86_64_aarch64-linux-gnu/bin/aarch64-linux-gnu-export
CC
=${CROSS_COMPILE}/gccexport
CXX
=${CROSS_COMPILE}/g++export
LD
=
${CROSS_COMPILE}/ldexport
AR
=
${CROSS_COMPILE}/arexport
AS
=
${CROSS_COMPILE}/asexport
RANLIB
=
${CROSS_COMPILE}/ranlibexport
NVCC
=${TARGET_ROOTFS}/usr/local/cuda/bin/nvccexport
LC_ALL=COption
1:SETUP
THE
CROSS
COMPILE41for
i
in
/dev
/dev/pts
/proc
/sys
/run;
do
sudo
mount-B
$i
/mnt$i;
donesudo
mount
-t
proc
/proc
procsudo
mount
--rbind
/sys
syssudo
mount
--rbind/dev
devsudo
mount
--rbind
/runrunsudo
mount
-o
bind/dev
devsudo
mount
-o
bind
/sys
syssudo
mount-t
proc
/procprocsudo
mount
-o
bind/run
runSudo
rm
/etc/resolv.conf
echo
'nameserver
'
|
sudo
tee-a
/etc/resolv.confOption
2:SETUP
THE
QEMU42for
i
in
/dev
/dev/pts
/proc
/sys
/run;
do
sudo
mount-B
$i
/mnt$i;
donesudo
mount
-o
bind/dev
devsudo
mount
-o
bind
/sys
syssudo
mount-t
proc
/proc
procsudo
mount
-o
bind/run
runsudo
chroot
./zhj-buffer/Cross-Compile-Jetson$
cd
/mnt/rootfs/usr/local/cuda/bin/$
./cuda-install-samples-10.0.sh
~/$
cd
~/NVIDIA_CUDA-10.0_Samples$
make-j8$ cp
bin/aarch64/linux/release/
/mnt/rootfs/home/nvidia/
-rfCUDA
Cross
Compile
&
Demo43Verify
on
Jetson44DeviceQuery45$cd/usr/local/cuda/samples/1_Utilities/deviceQuery$
sudomake$
./deviceQueryCUDA
Capability
7.2$
nvidia@nvidia-desktop:/usr/local/cuda/samples$
~/release/smokeParticlesCUDA
Cross
Compile
&
Demo46Pre-request
for
Caffewget
/Kitware/CMake/releases/download/v3.17.1/cmake-3.17.1.tar.gz
apt-get
install
libssl-dev./configure47Make–j16Make
install/usr/local/bin/cmake/zhj-buffer/Cross-Compile-Jetson/installation.htmlCompile
Caffe
&
Testgit
clone
/BVLC/caffe.git/download/
sudo
apt
install
libatlas-base-devsudo
apt
installlibatlas-devsudoapt
installlibopenblas-devsudo
apt
install
libsnappy-devsudoapt
installlibleveldb-devsudo
apt
installliblmdb-dev
apt
install
libboost-all-devapt
install
libgflags-devapt
install
libgoogle-glog-dev48sudo
rm
/etc/resolv.conf
echo
'nameserver
'
|sudo
tee
-a/etc/resolv.conf/zhj-buffer/Cross-Compile-Jetson/installation.htmlPre-request
for
CaffeCompile
Caffe
&
TestHost:cd
caffevim../cmake/Cuda.cmakeset(Caffe_known_gpu_archs
"72")change
CV_LOAD_IMAGE_COLOR
to
cv::IMREAD_COLORchange
CV_LOAD_IMAGE_GRAYSCALE
to
cv::IMREAD_GRAYSCALEmkdir
build/usr/local/bin/cmake
../makeallmake
testmake
pycaffecd
/media/green/M0/rootfs-xavier/home/nvidia/caffe/buildsudo
cp
lib
/mnt/rootfs/home/nvidia/caffe/build/-rfsudo
cp
../python/
/mnt/rootfs/home/nvidia/caffe/
-rf49Jetson:export
PYTHONPATH=/home/nvidia/caffe/python:$PYTHONPATHPythonImport
caffeCompile
Caffe
&
Test50Compile
Caffe
&
test51Compile
Caffe
&
Test52Jetson:cd
/media/green/M0/rootfs-xavier/home/nvidia/caffesudocp
build/tools/
/mnt/rootfs/home/nvidia/caffe/build/-rfsud
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 位置与方向教学设计
- 学写导游词教学设计
- 立定跳远教学设计及反思
- 网上开店的前期准备教学设计
- 涸辙之鲋教学设计
- 数的奇偶性教学设计
- 导数与函数的单调性教学设计
- 步三段两分支的课堂教学设计的结构
- 求一个数比另一个数多几或少几教学设计宋春平
- 国有土地使用权信托合同范例二零二五年
- jbt11969游泳池用空气源热泵热水机电子版
- 法理学马工程教材
- 轮状病毒性肠炎护理查房
- 超声危急值-课件
- 最全的遗传概率计算方法(高中生物)题库
- 租用电表合同范本
- 管家部布草报损和报废制度
- 强化劳动教育认知提升小学劳动教育实效性 论文
- 2023年重庆市大渡口区春晖路街道阳光社区工作人员考试模拟试题及答案
- 医院灾害脆弱性分析报告(2020版)
- 特殊特性与控制方法培训教材吉麦20200103
评论
0/150
提交评论