




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1
EconomicPolicyChallengesfortheAgeofAI1
AntonKorinek(UniversityofVirginia,CSHVienna,andGovAI)
September2024
ThispaperexaminestheprofoundchallengesthattransformativeadvancesinAItowardsArtificialGeneralIntelligence(AGI)willposeforeconomistsandeconomicpolicymakers.IexaminehowtheAgeofAIwillrevolutionizethebasicstructureofoureconomiesbydiminishingtheroleoflabor,leadingtounprecedentedproductivitygainsbutraisingconcernsaboutjobdisruption,incomedistribution,andthevalueofeducationandhumancapital.Iexplorewhatrolesmayremainforlaborpost-AGI,andwhichproductionfactorswillgrowinimportance.ThepaperthenidentifieseightkeychallengesforeconomicpolicyintheAgeofAI:(1)inequalityandincomedistribution,(2)educationandskilldevelopment,(3)socialandpoliticalstability,(4)macroeconomicpolicy,(5)antitrustandmarketregulation,(6)intellectualproperty,(7)environmentalimplications,and(8)globalAIgovernance.Itconcludesbyemphasizinghoweconomistscancontributetoabetterunderstandingofthesechallenges.
I.Introduction
Therapidriseofartificialintelligence(AI)willpresentsignificantchallengesforeconomicpolicy.ThereleaseoflargelanguagemodelssuchasChatGPTinlate2022hasheightenedpublic
awarenessofAI'spotentialandstimulateddiscourseonitssocietalimpacts,yetitrepresentsjustonesteppingstoneonthelargertrajectoryofAIadvancement.AsAIcapabilitiescontinuetogrow,itbecomesincreasinglycrucialtore-evaluateoureconomicandpolicyframeworkstoensuretheirrelevanceandappropriatenessfortheAgeofAI.
ThispaperexaminestheeconomicimplicationsofadvancedAI,withparticularemphasisonthe
potentiallyimpendingdevelopmentofArtificialGeneralIntelligence(AGI)–AIsystemscapableofperformingintellectualtasksatorabovethehumanlevelacrossdomains.Iarguethattheadventof
AGIcouldfundamentallyalterthedynamicsofoureconomicsystem,necessitatingacomprehensivereassessmentofeconomictheoryandpolicy.
1ThispaperwaspreparedforaconferenceorganizedbythePetersonInstituteforInternationalEconomics
andtheInternationalMonetaryFundon“RethinkingEconomicPolicy:SteeringStructuralChange.”The
authorwouldliketothankJustinBullock,DuncanCass-Beggs,TomCunningham,BillGates,TimLaseter,
SamManning,DonghyunSuh,JoeStiglitz,andPetiaTopalovaaswellastheparticipantsoftheconferencefortheirthoughtfulcommentsanddiscussions.FinancialsupportfromtheUniversityofVirginia'sBankardFundforPoliticalEconomyandDardenSchoolofBusinessisgratefullyacknowledged.
2
IstartwithabriefdescriptionofthetrajectoryoftechnologicaladvancesdrivingAIprogress,
emphasizingtheexponentialgrowthincomputationalpowerandincreasesinalgorithmic
efficiency.ThenIdrawontheperspectivesofeminentAIresearchersandindustryleaderstolayoutpotentialtrajectoriesforAGIdevelopmentanddiscusskeyindicatorsthatmaysignalitsapproach.
Mymainfocusistheeconomicimplications.IarguethattheemergenceofAGIwillmarktheendoftheIndustrialAgeandusherinaneweconomicera,justliketheIndustrialAgeendedthe
Malthusianera.Thischangeinparadigmwillinvolveasignificantshiftinwhatfactorsofproductionarerelevantfortheeconomy,awayfromlabortoreproduciblefactorssuchascomputational
resourcesandrobots,withconsequentimplicationsforproductivityandoutputgrowth.
ThepaperproceedstoraiseeightchallengesthatadvancedAIposesforeconomicsandeconomicpolicy.First,Idiscussthechallengeofincomedistributionandinequalityinaworldwherehumanlabormaybecomeincreasinglysubstitutable.Second,Iassessthedevaluationofhumancapitalandtheneedtorecalibrateapproachestoeducationandskilldevelopment.Third,Ifocusonthe
resultingchallengetosocialandpoliticalstability.Fourth,Idiscussmacroeconomic
considerations,includingshiftsinaggregatedemandinahighlyautomatedeconomyinwhich
labor’srelevancediminishes,andpotentialadaptationsformonetaryandfiscalpolicies.Fifthandsixth,Ibringuptheimplicationsforantitrustpolicyandintellectualpropertyregimes.Seventh,I
examinetheenvironmentalchallengesfromrapidAIdevelopment.Eighth,Iraiseinternational
economicpolicyandgovernancechallenges,includingthemanagementofAI-drivengeopoliticaldynamicsandthemitigationofpotentialglobaldisparitiesinAIcapabilities.SuccessfullypreparingoureconomyandsocietyforthepotentialofAGIwillrequiremeetingallthedescribedchallenges–andlikelymanymore.
Thepaperconcludesbyreflectingontheroleofeconomicanalysisinaddressingthesechallenges,andbyemphasizinghowAIitselfcanbeleveragedasatoolforeconomicanalysis.Throughoutthepaper,IemphasizetheimportanceofproactivepreparationsforthechallengesandopportunitiespresentedbyadvancedAI.Asweapproachapotentiallytransformativetechnologicalshift,itis
imperativethatweexamineandadaptoureconomicpoliciestothenovelchallengesoftheAIage.Thispaperaimstocontributetothiscrucialresearchagenda.
II.TechnologicalCapabilities
ThefieldofAIhaswitnessedunprecedentedgrowthinrecentyears,withprogressacceleratingatapacethatchallengesourtraditionalunderstandingoftechnologicaladvancement.Thissection
exploresthekeydriversbehindthisrapidprogressandexaminesthepotentialtrajectoriesforfutureAIdevelopment.
1.Exponentialprogressincomputing
Moore'sLawhaslongbeenakeybenchmarkforprogressinthedomainofcomputation.Translatedintoeconomicterms,Moore(1965)predictedadoublingintheefficiencyofmicroprocessorseverytwoyears.Thisregularityhasapproximatelyheldformorethanahalf-centurynow,enablingrapidefficiencygainsincomputing,whichinturnunderpinnedtheriseofAIinrecentdecades.
3
ThepaceofgrowthinthecomplexityofAIsystems,however,hasfaroutstrippedeventheserapidefficiencygains.AsobservedbySevillaandRoldan(2024),theamountofcomputationalpower(or“compute”)employedintrainingcutting-edgeAIsystemshasdoubledeverysixmonthsoverthepastdecade.ThistrendisvisuallyrepresentedinFigure1.
Figure1:Thetrainingcomputeemployedbythemostcutting-edgeAImodelsdoubledonaverageeverysixmonthsforthepast15years.DistributedunderaCC-BY4.0licensebyEpoch.
Thetrainingcomputeofthesystemsdepictedinthefigurehasgrownmuchfasterthanwhatis
impliedbyMoore’sLawbecausetheinvestmentsincomputebyfrontierAIcompanieshaveon
averagetripledeveryyearovertheperiod
.2
EstimatesofthecostofcurrentfrontierAIsystemsareintherangeofhundredsofmillionsofdollars,potentiallysoonsurpassingthebilliondollarthreshold.IndustryobserverspredictthattheexponentialgrowthofthecomputeinvestedinfrontierAI
modelswillcontinueforatleastanotherthreetofiveyears,andpossiblylonger,giventherecenteconomicsuccessofAImodels(Sevillaetal,2024).Ifcurrenttrendscontinue,wemayseetrilliondollartrainingrunsforfrontierAImodelsbytheendofthedecade.
Therapidgrowthinthecomputationalresourcesdeployediscomplementedbysignificant
improvementsinalgorithmicefficiency.Hoetal(2024)reportthatthealgorithmicefficiencywith
whichAIsystemsutilizecomputehasgrownatarateofabout2.5xperyear.Whenmultiplyingtheseefficiencygainswiththe4xincreaseincomputeusestemmingfromMoore’sLawandincreased
investmentincompute,thesefactorsresultinastaggering10xincreaseintheeffectivecompute
2Adoublingofcomputeeverysixmonthsimpliesa16-foldincreaseevery2years.SinceMoore’sLawimplies“only”adoublingofchipefficiencyeverytwoyears,an8-foldincreaseinspendingoncomputeisrequired
everytwoyearstoachievetheobservedoverallgrowthofcompute–almostamountingtoatriplingperyear.
4
usedfortrainingfrontierAIsystemseverysingleyear.Inaddition,themostrecentgenerationofAImodelsthatcanperformreasoning-relatedtasks,suchasOpenAI’so1,alsoemploysubstantialamountsofcomputeattheinferencestage,i.e.,whentheyrespondingtouserinquiries.
Theimplicationsofthisrapidgrowthincomputeareprofound.AsAIsystemsbecomemore
powerful,theycantackleincreasinglycomplextasks,leadingtobreakthroughsinmoreandmoredomainsofhumancognitivework.ThecomplexityoffrontierAImodelsisrapidlyapproachingourbestestimatesofthecomplexityoftheneuralnetworksinthehumanbrain(Carlsmith,2020).
Moreover,advancesinroboticssuchashumanoidrobotsarealsoproceedingatarapidpace(see,e.g.,Duetal.,2024).
2.Computeandcapabilities
WhileinputstoAIandalgorithmicefficiencyareimportant,whatmattersfromaneconomic
perspectiveishowtheseinputstranslateintooutputs,i.e.,intoAIsystems’capabilities.Thisiswhatweturntonext.
ScalinglawsAdvancesinAIcapabilitiesfollowpredictableregularities–so-calledscalinglaws–thatdescribehowmuchbetterAIsystemsbecomeatpredictionasthenumberofmodel
parametersandtheamountoftrainingdataincrease(Kaplanetal,2020;Hoffmanetal,2022).
Together,theparametercountandamountoftrainingdatadeterminehowmuchcomputeis
neededtotrainamodel.ThedescribedscalinglawshaveheldformorethanadecadenowandareattheheartofthestrategiesemployedbyfrontierAIlabsintheirpursuitofAGI.Thepredictive
poweroftheselawsallowsresearcherstoestimatehowmuchimprovementinAIcapabilitiescanbeexpectedfromfurtherincreasesincomputationalresources,guidingbothresearchand
investmentbyAIlabs.Morerecently,OpenAI(2024)foundthatscalinglawsapplynotonlytothemodeltrainingstage,butalsowhenlettingAImodelsdeliberatebeforegivinganswersatthe
inferencestage,implyingthatmorecomputeispredictablyassociatedwithbetteranswers.
Moregenerally,neuralnetworks,thefundamentalbuildingblocksofmodernAIsystems,are
universalapproximatorsofarbitraryfunctions(Cybenko,1989;Horniketal,1989).Thismeansthat,intheory,theycanperformanyinformationprocessingtaskarbitrarilywell,givensufficient
resourcesandtrainingdata.Theexperienceofthepastdecadehasshownthattheyareinfactveryefficientfunctionapproximatorsforawiderangeofreal-worldusecases.ThispropertyunderpinsthepotentialofAIsystemsacrossawiderangeofapplications–includingthepossibilityof
performingalltheintellectualfunctionsofthehumanbrain.
3.PredictionsofAGI
OneofthecrucialquestionsregardingthefutureimpactofAIiswhetherandwhenAIsystemswillmatchhumanlevelsofintelligenceacrossallcognitivetasksthathumanscanperform,asthis
wouldcreatethepotentialforwidespreadlaborsubstitution.AIsystemsthatcandothisare
termedartificialgeneralintelligence(AGI)todistinguishthemfromnarrowAIsystemsthatcanonlyperformindividualtasksorasmallrangeoftasks,suchasimagerecognitionorvoicetranscription(Morrisetal.,2024).
5
Justafewyearsago,allAIsystemswerenarrow.However,modernlargelanguagemodels(LLMs)andothertypesofgenerativeAIsincetheearly2020sareincreasinglygeneralpurpose,performingagrowingrangeofcognitivefunctions,fromcreativetaskstosimpleformsofreasoning.
TherapidprogressoverthepastfewyearshascompressedthetimelinesforachievingAGI.Inthe2010s,themedianestimateofAIresearchersforwhenAGIwouldbereachedwasinthesecond
halfofthe21stcentury(Graceetal.,2018).Morerecently,agrowingnumberofAIresearchersandindustryleadershaveofferedmuchshortertimelines.GeoffreyHinton,oneofthethree"godfathersofdeeplearning"whowontheTuringawardfortheircontributionstothefield,proclaimedthat"[hehad]suddenlyswitched[his]viewsonwhetherthesethingsaregoingtobemoreintelligentthanus"andexpectsAGItobereachedin“5to20yearsbutwithoutmuchconfidence[since]weliveinveryuncertaintimes”(Hinton,2023).Likewise,SamAltman,CEOofOpenAI,statedthat"AGIwillbea
realityin5years,giveortake"inearly2024.Thesepredictionsarealsoinlinewiththeexpectationsofthegeneralpublic(Pauketatetal.,2023).
AGIwouldbetransformativeforoureconomyandsociety,creatingbothopportunitiesandrisksofunprecedentedscope.Thishasledtoagrowingsenseofalarmamongtechnologyexpertswhoseepotentiallyradicalchangesoccurringwithinashortperiod.TheyseetheexponentialgrowthofAIandassociatedscalinglawsandwonderwhytheworldisnotmorealarmed.
GeoffreyHinton’swarningsareakintoAlbertEinstein’slettertoUSPresidentFranklinDelano
Roosevelt,inwhichhewarnedofthepossibilitythatnuclearpowercouldbeharnessedforatomicweapons,givingrisetothenuclearage.Therewassignificantuncertaintyabouthowrealisticthe
predictionsofEinsteinandotherexpertswereatthetime,andhowsoontheirpredictionswouldbe
realized.In1933,ErnestRutherfordcalledthenotionthatnuclearpowercouldeverbeharnessed“moonshine.”Wearefacingsimilaruncertaintytoday,butthescalingofAIisnonetheless
proceedingrelentlessly.
4.HarbingersofAGI
EconomistshaveanimportantroletoplayinshapingthedirectionofprogresstowardsAGI(KorinekandStiglitz,2022)andinhelpingoursocietytoprepareforandadapttotheresultingdisruptionsaswellastointegratetheincreasinglycapableAIsystemsintooureconomicsystem.
GiventheuncertaintyaboutwhetherandhowquicklythedevelopmentofAGImightcometopass,itisimportanttocloselyfollowadvancesinAIandregularlyupdatepredictions.Todoso,itisusefultomonitorfourkeycategoriesofindicators:
1.AIResearchBreakthroughs:TrackingmajoradvancesinAIresearchanddevelopmentis
perhapsthemostdirectindicatorofprogressinAI,althoughitisdifficulttoappreciatethe
overallimpactofaseriesofrelativelysmallindividualadvances.Forexample,leadingAGIlabsarecurrentlyfocusedonimprovingthereasoningcapabilitiesofAIsystems–aweakpointof
LLMs.ThismayrequireapproachesthatgobeyondthecurrentarchitectureofLLMs.Someof
therecentadvancesinthisdomainwereGoogleDeepMind'sAlphaProofandAlphaGeometry2,whichsolvedmathproblemsofequivalentdifficultytoSilverMedalistsatthe2024InternationalMathOlympiad(DeepMindAlphaProofandAlphaGeometryTeams,2024).Moreover,monitoringthetrajectoryandspeedofAImodelsimprovementallowsobserverstorecognizetrendsand
6
makebetter-informedpredictions.
Aparticularlyimportanttypeofresearchbreakthroughareadvancesthatautomatethe
researchprocessitself,whichcansignificantlyacceleratethecreationofbetterAIsystemsinthefuture.IfAIsystemscanproducebetterAIsystemswithlessandlesshumaninput,itmarksanimportantsteptowardsAGI.AIsystemsarealreadycontributingtotheirowndevelopment.Pengetal.(2023)demonstratethataccesstoAI-poweredcodingassistantsallows
programmerstocompletecodingtasks56percentfaster–andthisalsoappliestothe
programmersoffutureAIsystems.Luetal.(2024)describeanAIagentthattheyterm“AI
scientist,”whichcanautonomouslyproduceideasforpapersincomputerscience,execute
them,andwriteuptheresults,givingrisetonovelresearchinsights.AIisalsobeingusedinthedesignofAIchips,potentiallyacceleratinghardwaredevelopmentforAIsystems(Mok,2024).
2.AIProductReleases:TrackingtheperformanceofnewAIproductsonestablishedbenchmarkscanprovideadditionalconcreteevidenceofAIcapabilities.Thisishighlyusefulforeveryone
whoperformscognitivework–forexample,ImyselfcontinuallytrackprogressingenerativeAIsystemstobetterunderstandhowIcanoptimallydeploytheminmyresearch.Thisallowsmetohaveafirst-personperspectiveonhowAIisrevolutionizingtheconductofeconomic
research(Korinek,2023a,2024).Thereisnogoodsubstituteforhavingthistypeofsubjectiveexperience.
3.AIDeploymentAcrosstheEconomy:Lastly,monitoringtheadoptionandimpactofAI
technologiesinworksettingscanofferareal-worldperspectiveonthepracticalAI
advancements.Thiscanmosteasilybeobservedinone’sownareaofwork–forexample,in
economics,generativeAIhasbeenadoptedheavilybyyoungerresearcherssuchasPhD
studentsandassistantprofessors,whereasoldergenerationsofeconomistslagbehind,
makingitharderforthemtoassessadvancesinAI.OftentimesIlearnaboutnewAIcapabilitiesbylookingovertheshouldersofmyyoungercolleagues.Naturally,acompletepicturecanonlybeobtainedbymonitoringthedeploymentofAIacrossdifferentsectorsoftheeconomytogetabetterunderstandingofwhattaskscanorcannotbeperformedbyAIandhowclosewearetoAGI(see,e.g.,Bonneyetal,2024).
4.FinancialMarketTrends:Financialmarketsareamirroroftheexpectationsoftheir
participantsandthereforereflectpublicexpectationsofAGI.Inprimarymarkets,the
expectationofAGIislikelytoleadtoagrowinginfluxofinvestmentsintoAI,bothonthe
hardwareandsoftwareside.Insecondarymarkets,stockpricesofexistingcorporationsthat
produce,incorporate,orotherwisebenefitfromAIarelikelytoseelargerun-upsinassetprices.Moreover,interestratesmayriseinparallelwithapick-upingrowthexpectations(Chowetal.,2023).Althoughfinancialmarketsareinherentlynoisyandpronetoboomsandbusts,their
forward-lookingnatureprovidesausefulcomplementtorealindicators.
III.EconomicimplicationsofAGI
ThissectiondiscussestheimplicationsofAGIforeconomicsandeconomicpolicy.Forthesakeofclarity,IwillcutthroughtheuncertaintyregardingthedevelopmentofAGIandtakeitasgiventhatAGIwillbereachedwithintheforeseeablefuture,inlinewithHinton’sprediction.Moreover,Iwill
7
assumethatprogressinroboticswillproceed,andthatAGI-poweredrobotscanperformanyphysicalworkthathumanscanperformsoonafterAGIisreached
.3
RigorouslypreparingeconomicpolicyfortheAgeofAGIwillrequirescenarioplanningtoexaminetheimpactofalternativeeconomicpoliciesunderdifferentscenariosfortechnological
advancement.Korinek(2023b)andKorinekandSuh(2024)provideexamples.However,eveniffullAGIisnotachievedinthenearfuture,theeconomicchallengesdiscussedbelowaredirectionallycorrectandrelevant.
1.Historicaleconomicparadigms
TounderstandtheeconomicimplicationsofachangeastransformativeasAGI,itisusefultotakeastepbackandlookatthelonger-termtrajectoryofoureconomicsystem,startingwiththe
MalthusianAge.IwillthenexplorewhatchangedintheIndustrialAgeandwhatislikelytochangeintheAgeofAGI,focusingontheeffectsonoutputandwages.
TheMalthusianAge
IntheMalthusianAge,theeconomywascharacterizedbyaproductionfunctionoftheformY=AF(T,L)
wheretechnology,A,waslargelystagnant(orgrowingveryslowly),land,T,wasthescarceresource,
andhumanswhoprovidedlabor,L,werereproducible.Inthisera,populationgrowthwas
constrainedbytheresourcestheeconomycouldproduce.Giventhefixedfactorland,anincreaseinpopulationimpliedadecreasingmarginalproducttohumanlabor.Humansreproducedtothepointwhereourmarginalproductequaledoursubsistencelevel.Alargerpopulationcouldnotbesupportedsoanyadditionalpopulationgrowthledtodestitution,hunger,anddeath.Giventhis
situation,landwasthemostvaluableproductionfactor–farmorevaluableinrelativetermsthanitistoday.Humansearnedasubsistenceincomethatwasjustenoughtosurvive.Fromapurely
economicperspective,themarginalhumanwasdispensable.
TheIndustrialAge
Theeconomyoftheindustrialagehasbeenthemainfocusofmoderneconomics–itcapturesthe
worldwearestilllivingin.ItischaracterizedbyaproductionfunctionoftheformY=AF(K,L)
wheregrowthintechnology,A,isthekeydriverofeconomicgrowth,capital,K,isthereproduciblefactorandaccompaniedthegrowthinA,andlabor,L,growssoslowlythatisusuallytakenas
exogenous.SincetheIndustrialRevolution,output,Y,inadvancedcountrieshasgrownabout20-fold,drivenbycomparativelyrapidtechnologicaladvances.
3RoboticshasrecentlyexperiencedbreakthroughsbycombiningrobotswithmorecapablebrainsintheformofmodernAIsystems.Robotsthatcanperformanyhumantaskswilllikelytakelongerthan5years,i.e.,theywillmaterializemoreslowlyifAGIhappenssoon.However,AGIwilllikelydesignrobotsthatcanperformanyphysicaltaskifhumanshavenotgottentheirfirst.
8
Giventheseadvances,laborsuddenlybecamethescarcefactorofproductionandexperiencedlargeincreasesinitsmarginalproductinparallelwiththe20-foldincreaseinoutput,givingrisetothelevelofwagesthatweseetoday.Inshort,labortransitionedfrombeingdispensableto
becomingthebottleneckproductionfactoroftheeconomy.
TheAgeofAGI
WhenAGIisreached,AIsystemscan,bydefinition,performanycognitiveworkthathumanscanperform,and,perourearlierassumption,willsoonperformanyphysicalworkaswell,givingrisetoaproductionfunctionoftheform
Y=AF(K,L+M)
inwhichthenewvariable,M,capturesmachines,intheformofAIcomputeandrobots.Inthissimplemodel,machinesareaperfectsubstituteforhumanlabor,i.e.,forbothhumancomputeandhumanphysicalcapabilities
.4
InanAGI-poweredworld,growthintechnologyAwillalsoaccelerate,asartificialbrainpowerandrobotscandrivescientificprogressandinnovation.BothtraditionalphysicalcapitalKandthenewmachineswillbereproducibleresources.Thedistinctionbetweenthetwowillincreasinglyblur.
Theywillaccumulatewithoutboundsandgenerateevermoreeconomiccapacity,inthespiritofRomer(1986)-styleAK-models.
Animmediateimplicationisthatthegrowthrateofoutputwillrise.Iftechnologyisacceleratingandallfactorsofproductionarereproducible,therearenomorebottleneckstooutputgrowthinthe
formoffixedfactors.
Theimplicationsforthemarginalproductoflaborarealsostraightforward.IntheMalthusianage,landwasthebottleneckfactor,andthemarginalproductoflaborwascompeteddowntothe
humansubsistencelevelbythecruelprocessofhumansmultiplyinguntiltheavailablelivingspaceandarablelandwereexhausted.TheIndustrialAgeusheredinaGoldenAgeforhumans:laborwassuddenlythebottleneckfactor,andtheaveragereturnstolaborgrewabout20-foldaboveour
subsistenceneeds.IntheAgeofAGI,there'snoreasonforlabortocontinuetoplaysuchaspecialrole.IfAIcansolveallcomputationalproblemsthatourbrainscansolve,whyshouldhumanlaborhaveaspecialstatusinoureconomicsystem?Laborwouldbeaperfectsubstituteformachinessothetwowouldbeequallyscarce.Asmoreandmoremachinesareaccumulated,thevalueoflaborandbyextensionwageswilldiminish.Thiswillfundamentallychallengeourpresentsystemof
incomedistribution.
However,thedivergenceofoutputgrowthandthemarginalproductoflaboralsosuggeststhe
contoursofasolution.WhatisneededtocreatesharedprosperityistotakeasmallsliveroftherapidlyrisingoutputfromAGIandgiveittotheworkerswhoselabormarketvalueisdiminished.ThiscreatesthepotentialforaParetoimprovement,althoughsuchasolutionmayfacesignificantpoliticaleconomychallenges(see,e.g.,BellandKorinek,2023).
4AmorecomprehensiveproductionfunctionunderAGIcoulddistinguishlaborintoitscomponentsphysicalandcognitivelaborandobservethatAIandrobotsrespectivelysubstituteforeachofthetwocomponents.See,e.g.,Growiecetal(2024).
9
2.AGIscenarios
Toillustratehowtheforcesdescribedaboveunfoldinacomprehensivemacroeconomicmodel,Iprovideanoverviewofthefourmainexamplesfrom"ScenariosfortheTransitiontoAGI"byKorinekandSuh(2024).Ouranalysisisgroundedinatask-basedframeworkinthespiritofZeira(1999)andAcemogluandRestrepo(2018).Ourmaininnovationistorepresentworkasconsistingoftasks
varyingincomputationalcomplexitythatcanbeautomatedonlywhenAIreachesasufficientlevelofcapabilities.ThisapproachallowsustomodelhowexponentialadvancesinAIprogressively
automatemoretasksand,ifthereisamaximumleveloftaskcomplexityandAIsurpassesit,tocapturetheadventofAGI.
Weconsiderfourdistinctscenarios,eachbasedondifferentassumptionsaboutthedistributionoftaskcomplexityandtherateoftechnologicalprogress.Inallscenarios,weassumethatan
automationindex,representingthemaximumcomplexityofautomatabletasks,growsovertimeatanexogenousrate,reflectingreflectstheobservedtrendsincomputingpowerandAIcapabilitiesdiscussedbefore.Thekeydifferentiatorbetweenscenariosisthedistributionoftaskcomplexity.
1.Business-As-UsualScenario:ThisscenarioassumesthattaskcomplexityfollowsaPareto
distributionwithaninfiniterighttail,andthefractionofnon-automatedtasksdeclinesata
constantrate.Thisimpliesthattherearealwaystasksthatonlyhumanscanperformorthatwechoosenottoautomate.Underourassumptions,outputgrowssteadilyatabout2percentperyear.Forourparameterization,boththereturnstocapitalandthewagebillriseindefinitely,
approximatelyintandem.
Moregenerally,thereisaracebetweenautomationandcapitalaccumulation–automationtendstopulldownwageswhereastheaccumulationofcapitalthatiscomplementarytotheremainingtasksforlaborincreaseswages.Ifautomationproceedstooquickly,wagesmaydecline,eveniffullautomationisneverreached.
2.BaselineAGIScenario:Inthisscenario,thetaskcomplexityofhumanworkfollowsa
distributionwithafiniteupperbound,andfullautomationisreachedwithin20years,inlinewithHinton’supperrangeforwhenAGIwillbereached.Theeconomicimplicationsarestark:wagesgrowduringtheinitialperiodbutcollapsebefore
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 护理导论与护理程序
- 酱香酒知识培训课件
- 糖尿病及护理
- 心脏外科护理手术配合
- 妊娠期糖尿病护理
- 2025年庆八一建军节主题活动方案策划书
- 2025年精神文明建设工作方案
- 吸氧喉罩在气管切开中的护理
- 千聊上上传课程能放
- 教育发展回顾与展望
- 人工智能设计伦理知到智慧树章节测试课后答案2024年秋浙江大学
- 2024年中考语文复习:非连续性文本阅读(含练习题及答案)
- 2024年西藏初中学业水平考试生物卷试题真题(含答案解析)
- 血液净化护理质量控制
- 成人脑室外引流护理-中华护理学会团体 标准
- 2022-2023学年上海市徐汇中学七年级(下)期中语文试卷
- 《促进儿童个性发展之策略研究》17000字(论文)
- 地方导游基础知识电子教案 专题七 学习情境一 陕西省课时教案
- 创伤失血性休克中国急诊专家共识(2023)解读课件
- 项目管理工程师招聘笔试题与参考答案(某大型集团公司)2024年
- 高中文言文实词虚词总集(打印版)
评论
0/150
提交评论