人工智能时代的经济政策挑战_第1页
人工智能时代的经济政策挑战_第2页
人工智能时代的经济政策挑战_第3页
人工智能时代的经济政策挑战_第4页
人工智能时代的经济政策挑战_第5页
已阅读5页,还剩45页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1

EconomicPolicyChallengesfortheAgeofAI1

AntonKorinek(UniversityofVirginia,CSHVienna,andGovAI)

September2024

ThispaperexaminestheprofoundchallengesthattransformativeadvancesinAItowardsArtificialGeneralIntelligence(AGI)willposeforeconomistsandeconomicpolicymakers.IexaminehowtheAgeofAIwillrevolutionizethebasicstructureofoureconomiesbydiminishingtheroleoflabor,leadingtounprecedentedproductivitygainsbutraisingconcernsaboutjobdisruption,incomedistribution,andthevalueofeducationandhumancapital.Iexplorewhatrolesmayremainforlaborpost-AGI,andwhichproductionfactorswillgrowinimportance.ThepaperthenidentifieseightkeychallengesforeconomicpolicyintheAgeofAI:(1)inequalityandincomedistribution,(2)educationandskilldevelopment,(3)socialandpoliticalstability,(4)macroeconomicpolicy,(5)antitrustandmarketregulation,(6)intellectualproperty,(7)environmentalimplications,and(8)globalAIgovernance.Itconcludesbyemphasizinghoweconomistscancontributetoabetterunderstandingofthesechallenges.

I.Introduction

Therapidriseofartificialintelligence(AI)willpresentsignificantchallengesforeconomicpolicy.ThereleaseoflargelanguagemodelssuchasChatGPTinlate2022hasheightenedpublic

awarenessofAI'spotentialandstimulateddiscourseonitssocietalimpacts,yetitrepresentsjustonesteppingstoneonthelargertrajectoryofAIadvancement.AsAIcapabilitiescontinuetogrow,itbecomesincreasinglycrucialtore-evaluateoureconomicandpolicyframeworkstoensuretheirrelevanceandappropriatenessfortheAgeofAI.

ThispaperexaminestheeconomicimplicationsofadvancedAI,withparticularemphasisonthe

potentiallyimpendingdevelopmentofArtificialGeneralIntelligence(AGI)–AIsystemscapableofperformingintellectualtasksatorabovethehumanlevelacrossdomains.Iarguethattheadventof

AGIcouldfundamentallyalterthedynamicsofoureconomicsystem,necessitatingacomprehensivereassessmentofeconomictheoryandpolicy.

1ThispaperwaspreparedforaconferenceorganizedbythePetersonInstituteforInternationalEconomics

andtheInternationalMonetaryFundon“RethinkingEconomicPolicy:SteeringStructuralChange.”The

authorwouldliketothankJustinBullock,DuncanCass-Beggs,TomCunningham,BillGates,TimLaseter,

SamManning,DonghyunSuh,JoeStiglitz,andPetiaTopalovaaswellastheparticipantsoftheconferencefortheirthoughtfulcommentsanddiscussions.FinancialsupportfromtheUniversityofVirginia'sBankardFundforPoliticalEconomyandDardenSchoolofBusinessisgratefullyacknowledged.

2

IstartwithabriefdescriptionofthetrajectoryoftechnologicaladvancesdrivingAIprogress,

emphasizingtheexponentialgrowthincomputationalpowerandincreasesinalgorithmic

efficiency.ThenIdrawontheperspectivesofeminentAIresearchersandindustryleaderstolayoutpotentialtrajectoriesforAGIdevelopmentanddiscusskeyindicatorsthatmaysignalitsapproach.

Mymainfocusistheeconomicimplications.IarguethattheemergenceofAGIwillmarktheendoftheIndustrialAgeandusherinaneweconomicera,justliketheIndustrialAgeendedthe

Malthusianera.Thischangeinparadigmwillinvolveasignificantshiftinwhatfactorsofproductionarerelevantfortheeconomy,awayfromlabortoreproduciblefactorssuchascomputational

resourcesandrobots,withconsequentimplicationsforproductivityandoutputgrowth.

ThepaperproceedstoraiseeightchallengesthatadvancedAIposesforeconomicsandeconomicpolicy.First,Idiscussthechallengeofincomedistributionandinequalityinaworldwherehumanlabormaybecomeincreasinglysubstitutable.Second,Iassessthedevaluationofhumancapitalandtheneedtorecalibrateapproachestoeducationandskilldevelopment.Third,Ifocusonthe

resultingchallengetosocialandpoliticalstability.Fourth,Idiscussmacroeconomic

considerations,includingshiftsinaggregatedemandinahighlyautomatedeconomyinwhich

labor’srelevancediminishes,andpotentialadaptationsformonetaryandfiscalpolicies.Fifthandsixth,Ibringuptheimplicationsforantitrustpolicyandintellectualpropertyregimes.Seventh,I

examinetheenvironmentalchallengesfromrapidAIdevelopment.Eighth,Iraiseinternational

economicpolicyandgovernancechallenges,includingthemanagementofAI-drivengeopoliticaldynamicsandthemitigationofpotentialglobaldisparitiesinAIcapabilities.SuccessfullypreparingoureconomyandsocietyforthepotentialofAGIwillrequiremeetingallthedescribedchallenges–andlikelymanymore.

Thepaperconcludesbyreflectingontheroleofeconomicanalysisinaddressingthesechallenges,andbyemphasizinghowAIitselfcanbeleveragedasatoolforeconomicanalysis.Throughoutthepaper,IemphasizetheimportanceofproactivepreparationsforthechallengesandopportunitiespresentedbyadvancedAI.Asweapproachapotentiallytransformativetechnologicalshift,itis

imperativethatweexamineandadaptoureconomicpoliciestothenovelchallengesoftheAIage.Thispaperaimstocontributetothiscrucialresearchagenda.

II.TechnologicalCapabilities

ThefieldofAIhaswitnessedunprecedentedgrowthinrecentyears,withprogressacceleratingatapacethatchallengesourtraditionalunderstandingoftechnologicaladvancement.Thissection

exploresthekeydriversbehindthisrapidprogressandexaminesthepotentialtrajectoriesforfutureAIdevelopment.

1.Exponentialprogressincomputing

Moore'sLawhaslongbeenakeybenchmarkforprogressinthedomainofcomputation.Translatedintoeconomicterms,Moore(1965)predictedadoublingintheefficiencyofmicroprocessorseverytwoyears.Thisregularityhasapproximatelyheldformorethanahalf-centurynow,enablingrapidefficiencygainsincomputing,whichinturnunderpinnedtheriseofAIinrecentdecades.

3

ThepaceofgrowthinthecomplexityofAIsystems,however,hasfaroutstrippedeventheserapidefficiencygains.AsobservedbySevillaandRoldan(2024),theamountofcomputationalpower(or“compute”)employedintrainingcutting-edgeAIsystemshasdoubledeverysixmonthsoverthepastdecade.ThistrendisvisuallyrepresentedinFigure1.

Figure1:Thetrainingcomputeemployedbythemostcutting-edgeAImodelsdoubledonaverageeverysixmonthsforthepast15years.DistributedunderaCC-BY4.0licensebyEpoch.

Thetrainingcomputeofthesystemsdepictedinthefigurehasgrownmuchfasterthanwhatis

impliedbyMoore’sLawbecausetheinvestmentsincomputebyfrontierAIcompanieshaveon

averagetripledeveryyearovertheperiod

.2

EstimatesofthecostofcurrentfrontierAIsystemsareintherangeofhundredsofmillionsofdollars,potentiallysoonsurpassingthebilliondollarthreshold.IndustryobserverspredictthattheexponentialgrowthofthecomputeinvestedinfrontierAI

modelswillcontinueforatleastanotherthreetofiveyears,andpossiblylonger,giventherecenteconomicsuccessofAImodels(Sevillaetal,2024).Ifcurrenttrendscontinue,wemayseetrilliondollartrainingrunsforfrontierAImodelsbytheendofthedecade.

Therapidgrowthinthecomputationalresourcesdeployediscomplementedbysignificant

improvementsinalgorithmicefficiency.Hoetal(2024)reportthatthealgorithmicefficiencywith

whichAIsystemsutilizecomputehasgrownatarateofabout2.5xperyear.Whenmultiplyingtheseefficiencygainswiththe4xincreaseincomputeusestemmingfromMoore’sLawandincreased

investmentincompute,thesefactorsresultinastaggering10xincreaseintheeffectivecompute

2Adoublingofcomputeeverysixmonthsimpliesa16-foldincreaseevery2years.SinceMoore’sLawimplies“only”adoublingofchipefficiencyeverytwoyears,an8-foldincreaseinspendingoncomputeisrequired

everytwoyearstoachievetheobservedoverallgrowthofcompute–almostamountingtoatriplingperyear.

4

usedfortrainingfrontierAIsystemseverysingleyear.Inaddition,themostrecentgenerationofAImodelsthatcanperformreasoning-relatedtasks,suchasOpenAI’so1,alsoemploysubstantialamountsofcomputeattheinferencestage,i.e.,whentheyrespondingtouserinquiries.

Theimplicationsofthisrapidgrowthincomputeareprofound.AsAIsystemsbecomemore

powerful,theycantackleincreasinglycomplextasks,leadingtobreakthroughsinmoreandmoredomainsofhumancognitivework.ThecomplexityoffrontierAImodelsisrapidlyapproachingourbestestimatesofthecomplexityoftheneuralnetworksinthehumanbrain(Carlsmith,2020).

Moreover,advancesinroboticssuchashumanoidrobotsarealsoproceedingatarapidpace(see,e.g.,Duetal.,2024).

2.Computeandcapabilities

WhileinputstoAIandalgorithmicefficiencyareimportant,whatmattersfromaneconomic

perspectiveishowtheseinputstranslateintooutputs,i.e.,intoAIsystems’capabilities.Thisiswhatweturntonext.

ScalinglawsAdvancesinAIcapabilitiesfollowpredictableregularities–so-calledscalinglaws–thatdescribehowmuchbetterAIsystemsbecomeatpredictionasthenumberofmodel

parametersandtheamountoftrainingdataincrease(Kaplanetal,2020;Hoffmanetal,2022).

Together,theparametercountandamountoftrainingdatadeterminehowmuchcomputeis

neededtotrainamodel.ThedescribedscalinglawshaveheldformorethanadecadenowandareattheheartofthestrategiesemployedbyfrontierAIlabsintheirpursuitofAGI.Thepredictive

poweroftheselawsallowsresearcherstoestimatehowmuchimprovementinAIcapabilitiescanbeexpectedfromfurtherincreasesincomputationalresources,guidingbothresearchand

investmentbyAIlabs.Morerecently,OpenAI(2024)foundthatscalinglawsapplynotonlytothemodeltrainingstage,butalsowhenlettingAImodelsdeliberatebeforegivinganswersatthe

inferencestage,implyingthatmorecomputeispredictablyassociatedwithbetteranswers.

Moregenerally,neuralnetworks,thefundamentalbuildingblocksofmodernAIsystems,are

universalapproximatorsofarbitraryfunctions(Cybenko,1989;Horniketal,1989).Thismeansthat,intheory,theycanperformanyinformationprocessingtaskarbitrarilywell,givensufficient

resourcesandtrainingdata.Theexperienceofthepastdecadehasshownthattheyareinfactveryefficientfunctionapproximatorsforawiderangeofreal-worldusecases.ThispropertyunderpinsthepotentialofAIsystemsacrossawiderangeofapplications–includingthepossibilityof

performingalltheintellectualfunctionsofthehumanbrain.

3.PredictionsofAGI

OneofthecrucialquestionsregardingthefutureimpactofAIiswhetherandwhenAIsystemswillmatchhumanlevelsofintelligenceacrossallcognitivetasksthathumanscanperform,asthis

wouldcreatethepotentialforwidespreadlaborsubstitution.AIsystemsthatcandothisare

termedartificialgeneralintelligence(AGI)todistinguishthemfromnarrowAIsystemsthatcanonlyperformindividualtasksorasmallrangeoftasks,suchasimagerecognitionorvoicetranscription(Morrisetal.,2024).

5

Justafewyearsago,allAIsystemswerenarrow.However,modernlargelanguagemodels(LLMs)andothertypesofgenerativeAIsincetheearly2020sareincreasinglygeneralpurpose,performingagrowingrangeofcognitivefunctions,fromcreativetaskstosimpleformsofreasoning.

TherapidprogressoverthepastfewyearshascompressedthetimelinesforachievingAGI.Inthe2010s,themedianestimateofAIresearchersforwhenAGIwouldbereachedwasinthesecond

halfofthe21stcentury(Graceetal.,2018).Morerecently,agrowingnumberofAIresearchersandindustryleadershaveofferedmuchshortertimelines.GeoffreyHinton,oneofthethree"godfathersofdeeplearning"whowontheTuringawardfortheircontributionstothefield,proclaimedthat"[hehad]suddenlyswitched[his]viewsonwhetherthesethingsaregoingtobemoreintelligentthanus"andexpectsAGItobereachedin“5to20yearsbutwithoutmuchconfidence[since]weliveinveryuncertaintimes”(Hinton,2023).Likewise,SamAltman,CEOofOpenAI,statedthat"AGIwillbea

realityin5years,giveortake"inearly2024.Thesepredictionsarealsoinlinewiththeexpectationsofthegeneralpublic(Pauketatetal.,2023).

AGIwouldbetransformativeforoureconomyandsociety,creatingbothopportunitiesandrisksofunprecedentedscope.Thishasledtoagrowingsenseofalarmamongtechnologyexpertswhoseepotentiallyradicalchangesoccurringwithinashortperiod.TheyseetheexponentialgrowthofAIandassociatedscalinglawsandwonderwhytheworldisnotmorealarmed.

GeoffreyHinton’swarningsareakintoAlbertEinstein’slettertoUSPresidentFranklinDelano

Roosevelt,inwhichhewarnedofthepossibilitythatnuclearpowercouldbeharnessedforatomicweapons,givingrisetothenuclearage.Therewassignificantuncertaintyabouthowrealisticthe

predictionsofEinsteinandotherexpertswereatthetime,andhowsoontheirpredictionswouldbe

realized.In1933,ErnestRutherfordcalledthenotionthatnuclearpowercouldeverbeharnessed“moonshine.”Wearefacingsimilaruncertaintytoday,butthescalingofAIisnonetheless

proceedingrelentlessly.

4.HarbingersofAGI

EconomistshaveanimportantroletoplayinshapingthedirectionofprogresstowardsAGI(KorinekandStiglitz,2022)andinhelpingoursocietytoprepareforandadapttotheresultingdisruptionsaswellastointegratetheincreasinglycapableAIsystemsintooureconomicsystem.

GiventheuncertaintyaboutwhetherandhowquicklythedevelopmentofAGImightcometopass,itisimportanttocloselyfollowadvancesinAIandregularlyupdatepredictions.Todoso,itisusefultomonitorfourkeycategoriesofindicators:

1.AIResearchBreakthroughs:TrackingmajoradvancesinAIresearchanddevelopmentis

perhapsthemostdirectindicatorofprogressinAI,althoughitisdifficulttoappreciatethe

overallimpactofaseriesofrelativelysmallindividualadvances.Forexample,leadingAGIlabsarecurrentlyfocusedonimprovingthereasoningcapabilitiesofAIsystems–aweakpointof

LLMs.ThismayrequireapproachesthatgobeyondthecurrentarchitectureofLLMs.Someof

therecentadvancesinthisdomainwereGoogleDeepMind'sAlphaProofandAlphaGeometry2,whichsolvedmathproblemsofequivalentdifficultytoSilverMedalistsatthe2024InternationalMathOlympiad(DeepMindAlphaProofandAlphaGeometryTeams,2024).Moreover,monitoringthetrajectoryandspeedofAImodelsimprovementallowsobserverstorecognizetrendsand

6

makebetter-informedpredictions.

Aparticularlyimportanttypeofresearchbreakthroughareadvancesthatautomatethe

researchprocessitself,whichcansignificantlyacceleratethecreationofbetterAIsystemsinthefuture.IfAIsystemscanproducebetterAIsystemswithlessandlesshumaninput,itmarksanimportantsteptowardsAGI.AIsystemsarealreadycontributingtotheirowndevelopment.Pengetal.(2023)demonstratethataccesstoAI-poweredcodingassistantsallows

programmerstocompletecodingtasks56percentfaster–andthisalsoappliestothe

programmersoffutureAIsystems.Luetal.(2024)describeanAIagentthattheyterm“AI

scientist,”whichcanautonomouslyproduceideasforpapersincomputerscience,execute

them,andwriteuptheresults,givingrisetonovelresearchinsights.AIisalsobeingusedinthedesignofAIchips,potentiallyacceleratinghardwaredevelopmentforAIsystems(Mok,2024).

2.AIProductReleases:TrackingtheperformanceofnewAIproductsonestablishedbenchmarkscanprovideadditionalconcreteevidenceofAIcapabilities.Thisishighlyusefulforeveryone

whoperformscognitivework–forexample,ImyselfcontinuallytrackprogressingenerativeAIsystemstobetterunderstandhowIcanoptimallydeploytheminmyresearch.Thisallowsmetohaveafirst-personperspectiveonhowAIisrevolutionizingtheconductofeconomic

research(Korinek,2023a,2024).Thereisnogoodsubstituteforhavingthistypeofsubjectiveexperience.

3.AIDeploymentAcrosstheEconomy:Lastly,monitoringtheadoptionandimpactofAI

technologiesinworksettingscanofferareal-worldperspectiveonthepracticalAI

advancements.Thiscanmosteasilybeobservedinone’sownareaofwork–forexample,in

economics,generativeAIhasbeenadoptedheavilybyyoungerresearcherssuchasPhD

studentsandassistantprofessors,whereasoldergenerationsofeconomistslagbehind,

makingitharderforthemtoassessadvancesinAI.OftentimesIlearnaboutnewAIcapabilitiesbylookingovertheshouldersofmyyoungercolleagues.Naturally,acompletepicturecanonlybeobtainedbymonitoringthedeploymentofAIacrossdifferentsectorsoftheeconomytogetabetterunderstandingofwhattaskscanorcannotbeperformedbyAIandhowclosewearetoAGI(see,e.g.,Bonneyetal,2024).

4.FinancialMarketTrends:Financialmarketsareamirroroftheexpectationsoftheir

participantsandthereforereflectpublicexpectationsofAGI.Inprimarymarkets,the

expectationofAGIislikelytoleadtoagrowinginfluxofinvestmentsintoAI,bothonthe

hardwareandsoftwareside.Insecondarymarkets,stockpricesofexistingcorporationsthat

produce,incorporate,orotherwisebenefitfromAIarelikelytoseelargerun-upsinassetprices.Moreover,interestratesmayriseinparallelwithapick-upingrowthexpectations(Chowetal.,2023).Althoughfinancialmarketsareinherentlynoisyandpronetoboomsandbusts,their

forward-lookingnatureprovidesausefulcomplementtorealindicators.

III.EconomicimplicationsofAGI

ThissectiondiscussestheimplicationsofAGIforeconomicsandeconomicpolicy.Forthesakeofclarity,IwillcutthroughtheuncertaintyregardingthedevelopmentofAGIandtakeitasgiventhatAGIwillbereachedwithintheforeseeablefuture,inlinewithHinton’sprediction.Moreover,Iwill

7

assumethatprogressinroboticswillproceed,andthatAGI-poweredrobotscanperformanyphysicalworkthathumanscanperformsoonafterAGIisreached

.3

RigorouslypreparingeconomicpolicyfortheAgeofAGIwillrequirescenarioplanningtoexaminetheimpactofalternativeeconomicpoliciesunderdifferentscenariosfortechnological

advancement.Korinek(2023b)andKorinekandSuh(2024)provideexamples.However,eveniffullAGIisnotachievedinthenearfuture,theeconomicchallengesdiscussedbelowaredirectionallycorrectandrelevant.

1.Historicaleconomicparadigms

TounderstandtheeconomicimplicationsofachangeastransformativeasAGI,itisusefultotakeastepbackandlookatthelonger-termtrajectoryofoureconomicsystem,startingwiththe

MalthusianAge.IwillthenexplorewhatchangedintheIndustrialAgeandwhatislikelytochangeintheAgeofAGI,focusingontheeffectsonoutputandwages.

TheMalthusianAge

IntheMalthusianAge,theeconomywascharacterizedbyaproductionfunctionoftheformY=AF(T,L)

wheretechnology,A,waslargelystagnant(orgrowingveryslowly),land,T,wasthescarceresource,

andhumanswhoprovidedlabor,L,werereproducible.Inthisera,populationgrowthwas

constrainedbytheresourcestheeconomycouldproduce.Giventhefixedfactorland,anincreaseinpopulationimpliedadecreasingmarginalproducttohumanlabor.Humansreproducedtothepointwhereourmarginalproductequaledoursubsistencelevel.Alargerpopulationcouldnotbesupportedsoanyadditionalpopulationgrowthledtodestitution,hunger,anddeath.Giventhis

situation,landwasthemostvaluableproductionfactor–farmorevaluableinrelativetermsthanitistoday.Humansearnedasubsistenceincomethatwasjustenoughtosurvive.Fromapurely

economicperspective,themarginalhumanwasdispensable.

TheIndustrialAge

Theeconomyoftheindustrialagehasbeenthemainfocusofmoderneconomics–itcapturesthe

worldwearestilllivingin.ItischaracterizedbyaproductionfunctionoftheformY=AF(K,L)

wheregrowthintechnology,A,isthekeydriverofeconomicgrowth,capital,K,isthereproduciblefactorandaccompaniedthegrowthinA,andlabor,L,growssoslowlythatisusuallytakenas

exogenous.SincetheIndustrialRevolution,output,Y,inadvancedcountrieshasgrownabout20-fold,drivenbycomparativelyrapidtechnologicaladvances.

3RoboticshasrecentlyexperiencedbreakthroughsbycombiningrobotswithmorecapablebrainsintheformofmodernAIsystems.Robotsthatcanperformanyhumantaskswilllikelytakelongerthan5years,i.e.,theywillmaterializemoreslowlyifAGIhappenssoon.However,AGIwilllikelydesignrobotsthatcanperformanyphysicaltaskifhumanshavenotgottentheirfirst.

8

Giventheseadvances,laborsuddenlybecamethescarcefactorofproductionandexperiencedlargeincreasesinitsmarginalproductinparallelwiththe20-foldincreaseinoutput,givingrisetothelevelofwagesthatweseetoday.Inshort,labortransitionedfrombeingdispensableto

becomingthebottleneckproductionfactoroftheeconomy.

TheAgeofAGI

WhenAGIisreached,AIsystemscan,bydefinition,performanycognitiveworkthathumanscanperform,and,perourearlierassumption,willsoonperformanyphysicalworkaswell,givingrisetoaproductionfunctionoftheform

Y=AF(K,L+M)

inwhichthenewvariable,M,capturesmachines,intheformofAIcomputeandrobots.Inthissimplemodel,machinesareaperfectsubstituteforhumanlabor,i.e.,forbothhumancomputeandhumanphysicalcapabilities

.4

InanAGI-poweredworld,growthintechnologyAwillalsoaccelerate,asartificialbrainpowerandrobotscandrivescientificprogressandinnovation.BothtraditionalphysicalcapitalKandthenewmachineswillbereproducibleresources.Thedistinctionbetweenthetwowillincreasinglyblur.

Theywillaccumulatewithoutboundsandgenerateevermoreeconomiccapacity,inthespiritofRomer(1986)-styleAK-models.

Animmediateimplicationisthatthegrowthrateofoutputwillrise.Iftechnologyisacceleratingandallfactorsofproductionarereproducible,therearenomorebottleneckstooutputgrowthinthe

formoffixedfactors.

Theimplicationsforthemarginalproductoflaborarealsostraightforward.IntheMalthusianage,landwasthebottleneckfactor,andthemarginalproductoflaborwascompeteddowntothe

humansubsistencelevelbythecruelprocessofhumansmultiplyinguntiltheavailablelivingspaceandarablelandwereexhausted.TheIndustrialAgeusheredinaGoldenAgeforhumans:laborwassuddenlythebottleneckfactor,andtheaveragereturnstolaborgrewabout20-foldaboveour

subsistenceneeds.IntheAgeofAGI,there'snoreasonforlabortocontinuetoplaysuchaspecialrole.IfAIcansolveallcomputationalproblemsthatourbrainscansolve,whyshouldhumanlaborhaveaspecialstatusinoureconomicsystem?Laborwouldbeaperfectsubstituteformachinessothetwowouldbeequallyscarce.Asmoreandmoremachinesareaccumulated,thevalueoflaborandbyextensionwageswilldiminish.Thiswillfundamentallychallengeourpresentsystemof

incomedistribution.

However,thedivergenceofoutputgrowthandthemarginalproductoflaboralsosuggeststhe

contoursofasolution.WhatisneededtocreatesharedprosperityistotakeasmallsliveroftherapidlyrisingoutputfromAGIandgiveittotheworkerswhoselabormarketvalueisdiminished.ThiscreatesthepotentialforaParetoimprovement,althoughsuchasolutionmayfacesignificantpoliticaleconomychallenges(see,e.g.,BellandKorinek,2023).

4AmorecomprehensiveproductionfunctionunderAGIcoulddistinguishlaborintoitscomponentsphysicalandcognitivelaborandobservethatAIandrobotsrespectivelysubstituteforeachofthetwocomponents.See,e.g.,Growiecetal(2024).

9

2.AGIscenarios

Toillustratehowtheforcesdescribedaboveunfoldinacomprehensivemacroeconomicmodel,Iprovideanoverviewofthefourmainexamplesfrom"ScenariosfortheTransitiontoAGI"byKorinekandSuh(2024).Ouranalysisisgroundedinatask-basedframeworkinthespiritofZeira(1999)andAcemogluandRestrepo(2018).Ourmaininnovationistorepresentworkasconsistingoftasks

varyingincomputationalcomplexitythatcanbeautomatedonlywhenAIreachesasufficientlevelofcapabilities.ThisapproachallowsustomodelhowexponentialadvancesinAIprogressively

automatemoretasksand,ifthereisamaximumleveloftaskcomplexityandAIsurpassesit,tocapturetheadventofAGI.

Weconsiderfourdistinctscenarios,eachbasedondifferentassumptionsaboutthedistributionoftaskcomplexityandtherateoftechnologicalprogress.Inallscenarios,weassumethatan

automationindex,representingthemaximumcomplexityofautomatabletasks,growsovertimeatanexogenousrate,reflectingreflectstheobservedtrendsincomputingpowerandAIcapabilitiesdiscussedbefore.Thekeydifferentiatorbetweenscenariosisthedistributionoftaskcomplexity.

1.Business-As-UsualScenario:ThisscenarioassumesthattaskcomplexityfollowsaPareto

distributionwithaninfiniterighttail,andthefractionofnon-automatedtasksdeclinesata

constantrate.Thisimpliesthattherearealwaystasksthatonlyhumanscanperformorthatwechoosenottoautomate.Underourassumptions,outputgrowssteadilyatabout2percentperyear.Forourparameterization,boththereturnstocapitalandthewagebillriseindefinitely,

approximatelyintandem.

Moregenerally,thereisaracebetweenautomationandcapitalaccumulation–automationtendstopulldownwageswhereastheaccumulationofcapitalthatiscomplementarytotheremainingtasksforlaborincreaseswages.Ifautomationproceedstooquickly,wagesmaydecline,eveniffullautomationisneverreached.

2.BaselineAGIScenario:Inthisscenario,thetaskcomplexityofhumanworkfollowsa

distributionwithafiniteupperbound,andfullautomationisreachedwithin20years,inlinewithHinton’supperrangeforwhenAGIwillbereached.Theeconomicimplicationsarestark:wagesgrowduringtheinitialperiodbutcollapsebefore

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论