




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
空间线面关系的判定
我们能不能用直线的方向向量和平面法向量来刻画空间线面位置关系?思考2、若直线的方向向量为平面的法向量为则直线与
的位置关系是_____.3、若直线的方向向量为平面的法向量为若则实数的值为______.4、设分别是平面的法向量.若则t=______;若则t=_______.1、若直线的方向向量为,的方向向量为则___.l1l2l1l2l1l
设空间两条直线的方向向量为两个平面的法向量分别为平行垂直OBDCA
例1、如图,是平面的一条斜线,为斜足,,为垂足,,且求证:
在平面内的一条直线,如果它和这个平面的一条斜线的射影垂直,那么它也和这条斜线垂直。(三垂线定理)OBDCA已知:如图,是平面的一条斜线,为斜足,,为垂足,,且求证:变式练习:
三垂线定理:在平面内的一条直线,如果它和这个平面的一条斜线的射影垂直,那么它也和这条斜线垂直。
三垂线定理的逆定理:在平面内的一条直线,如果它和这个平面的一条斜线垂直,那么它也和这条斜线的射影垂直。例2、证明:如果一条直线和平面内的两条相交直线垂直,那么这条直线垂直于这个平面。(直线与平面垂直的判定定理)已知:如图,求证:
分析:要证明直线与平面垂直,只要证明该直线垂直于平面内任意一条直线。相交不共线又共面存在有序实数组使得,例3、如图,在直三棱柱-中,是棱的中点,求证:
例3、如图,在直三棱柱-中,是棱的中点,求证:
证明:在直三棱柱-中,因为,所以
因为,而所以,所以在中,因为所以所以因为,,且是棱中点,所以,所以所以:所以:即,
思考:还有其它的证明方法吗?
利用相似形与线面垂直分析:连结交于点因为所以,要证就是证即证1、利用相似可以证明,从而2、利用知道,即
你能试着建立适当的空间直角坐标系,用坐标表示向量,再证明它们互相垂直吗?证明:分别以所在直线为轴,轴,轴,建立空间直角坐标系图中相应点的坐标为:所以:所以:即,三种方法的比较:
证法一是几何向量法,要熟练掌握向量的加减运算及所满足的运算律。
证法二是向量的坐标运算法,关键是要恰当地建立空间直角坐标系,探求出各点的坐标。证法三是几何向量法和立体几何法的综合运用。
最终都是应用向量的数量积为0来证明线线垂直。A1xD1B1ADBCC1yzEFCD中点,求证:D1F例5.在正方体中,E、F分别是BB1,,平面ADE
证明:设正方体棱长为1,为单位正交基底,建立如图所示坐标系D-xyz,则可得:所以
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 人教部编版九年级上册3 我爱这土地获奖教学设计
- 四年级数学下册 七 奇异的克隆牛-小数加减法 我学会了吗教学设计 青岛版六三制
- 初中政治 (道德与法治)人教部编版七年级上册第四单元 生命的思考第八课 探问生命生命可以永恒吗教案
- 五年级信息技术下册 第十五课传情泡泡1教学设计 华中师大版
- 求一个数是另一个数的几倍(教学设计)-2024-2025学年三年级上册数学人教版
- 音乐教育4年级
- 鼻腔鼻窦肿瘤护理查房
- 人的生命周期(教学设计)-2023-2024学年二年级上册科学|沪教版
- 三年级信息技术下册 小小画展教学设计 华中师大版
- 人教部编版七年级上册让友谊之树常青教案
- 一次成型现浇混凝土楼面的施工
- 工程变更前后工程费用对比表
- aba应用行为分析考试题题库及答案
- 315消费者日宣讲教育教学模板内容完整
- Rubicon科室讲课幻灯
- 旧混凝土路面加铺沥青混凝土面层施工组织设计方案
- 《成人鼾症》ppt课件
- 配电线路巡视记录单
- 乙炔气柜施工方案
- 狼和兔子的凄美爱情故事,前世今生的约定,看哭了很多人
- 体育测量与评价PPT课件-第四章 心肺功能的测量与评价
评论
0/150
提交评论