第十三章-相交线-平行线(能力提升) 带解析_第1页
第十三章-相交线-平行线(能力提升) 带解析_第2页
第十三章-相交线-平行线(能力提升) 带解析_第3页
第十三章-相交线-平行线(能力提升) 带解析_第4页
第十三章-相交线-平行线(能力提升) 带解析_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第十三章相交线平行线(能力提升)考试时间:90分钟注意事项:本试卷满分100分,考试时间90分钟,试题共25题.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一、单选题(共6小题)1.如图,下列不能判定DF∥AC的条件是()A.∠A=∠BDF B.∠2=∠4 C.∠1=∠3 D.∠A+∠ADF=180°【答案】B【分析】根据同位角相等、内错角相等、同旁内角互补,两直线平行即可判断.【解答】解:A.∠A=∠BDF,由同位角相等,两直线平行,可判断DF∥AC;B.∠2=∠4,不能判断DF∥AC;C.∠1=∠3由内错角相等,两直线平行,可判断DF∥AC;D.∠A+∠ADF=180°,由同旁内角互补,两直线平行,可判断DF∥AC;故选:B.【知识点】平行线的判定2.如图,将一条对边互相平行的纸带进行两次折叠,折痕分别为AB、CD,若CD∥BE,∠1=40°,则∠2的度数是()A.90° B.100° C.105° D.110°【答案】B【分析】根据平行线的性质即可求解.【解答】解:延长BC至G,如下图所示,由题意得,AF∥BE,AD∥BC,∵AF∥BE,∴∠1=∠3(两直线平行,同位角相等),∵AD∥BC,∴∠3=∠4(两直线平行,同位角相等),∴∠4=∠1=40°,∵CD∥BE,∴∠6=∠4=40°(两直线平行,同位角相等),∵这条对边互相平行的纸带进行两次折叠,折痕分别为AB、CD,∴∠5=∠6=40°,∴∠2=180°﹣∠5﹣∠6=180°﹣40°﹣40°=100°,故选:B.【知识点】平行线的性质3.如图,AB∥CD,∠DCE的角平分线CG的反向延长线和∠ABE的角平分线BF交于点F,∠E﹣∠F=36°,则∠E=()A.82° B.84° C.97° D.90°【答案】B【分析】根据平行线的性质即可求解.【解答】解:过E作直线MN∥AB,如下图所示,∵AB∥MN,∴∠3+∠4+∠BEM=180°(两直线平行,同旁内角互补),∵AB∥CD,∴MN∥CD,∴∠MEC=∠1+∠2(两直线平行,内错角相等),∴∠BEC=∠MEC+∠BEM=180°﹣∠3﹣∠4+∠1+∠2,∵∠DCE的角平分线CG的反向延长线和∠ABE的角平分线BF交于点F,∴∠1=∠2,∠3=∠4,∴∠BEC=180°﹣2∠4+2∠1,∴∠4﹣∠1=90°﹣,∵四边形BECF内角和为360°,∴∠4+∠BEC+∠180°﹣∠1+∠F=360°,∴+∠F=90°,由,∴,故选:B.【知识点】平行线的性质4.如图,小敏在作业中的一道题:如图1,直线a,b所成的角跑到画板外面去了,你有什么办法量出这两条直线所成的角的度数?小敏的做法是:如图2,画PC∥a,量出直线b与PC的夹角度数,即直线a,b所成角的度数.其依据是()A.两直线平行,同位角相等 B.同旁内角互补,两直线平行 C.内错角相等,两直线平行 D.同位角相等,两直线平行【答案】A【分析】根据两直线平行,同位角相等求解.【解答】解:根据两直线平行,同位角相等得到直线a和直线b的夹角与直线b和直线PC的夹角相等.故选:A.【知识点】平行线的判定与性质5.已知l1∥l2,一块含30°的直角三角板如图所示放置,∠1=20°,则∠2=()A.30° B.35° C.40° D.45°【答案】C【分析】先根据三角形外角的性质求出∠EDG的度数,再由平行线的性质得出∠4CEF度数,由直角三角形的性质即可得出结论.【解答】解:如图,根据对顶角的性质得:∠1=∠3,∠2=∠4,∵∠EDG是△ADG的外角,∴∠EDG=∠A+∠3=30°+20°=50°,∵l1∥l2,∴∠EDG=∠CEF=50°,∵∠4+∠FEC=90°,∴∠FEC=90°﹣50°=40°,∴∠2=40°.故选:C.【知识点】平行线的性质6.如图,下列推理及括号中所注明的推理依据错误的是()A.∵∠1=∠3∴AB∥CD(内错角相等,两直线平行) B.∵AD∥BC∴∠2=∠4(两直线平行,内错角相等) C.∵∠BAD+∠ABC=180°∴AD∥BC(同旁内角互补,两直线平行) D.∵∠DAM=∠CBM∴AD∥BC(两直线平行,同位角相等)【答案】D【分析】根据平行线的判定与性质逐一进行推论即可.【解答】解:A.∵∠1=∠3,∴AB∥CD(内错角相等,两直线平行);所以A正确;B.∵AD∥BC,∴∠2=∠4(两直线平行,内错角相等);所以B正确;C.∵∠BAD+∠ABC=180°,∴AD∥BC(同旁内角互补,两直线平行);所以C正确;D.∵∠DAM=∠CBM,∴AD∥BC(同位角相等,两直线平行),所以D错误.故选:D.【知识点】平行线的判定与性质二、填空题(共12小题)7.如图,已知AB∥CD,BE平分∠ABD,∠BED=25°,则∠D=°.【答案】130【分析】根据平行线的性质可求∠ABE=25°,∠ABD+∠D=180°,再利用角平分线的定义可求解∠ABD的度数,进而可求解.【解答】解:∵AB∥CD,∠BED=25°,∴∠ABE=∠BED=25°,∠ABD+∠D=180°,∵BE平分∠ABD,∴∠ABD=2∠ABE=50°,∴∠D=180°﹣∠ABD=180°﹣50°=130°,故答案为130.【知识点】平行线的性质8.如图,将一个宽度相等的纸条沿AB折叠一下,如果∠1=136°,那么∠2=.【答案】112°【分析】根据平行线的性质可求解∠EAB+∠2=180°,∠DAE=136°,再利用折叠的性质可求解.【解答】解:如图,AC∥BD,∴∠EAB+∠2=180°,∠DAE=∠1,∵∠1=136°,∴∠DAE=136°,由折叠可知:∠DAB=∠EAB=∠DAE,∴∠EAB=68°,∴∠2=180°﹣68°=112°.故答案为112°.【知识点】平行线的性质9.如图,已知∠1=80°,∠2=100°,∠3=105°,则∠4=.【答案】75°【分析】由同旁内角互补,两直线平行可得l1∥l2,可得∠3+∠6=180°,即可求解.【解答】解:如图,∵∠2=∠5=100°,∠1=80°,∴∠1+∠2=180°,∴l1∥l2,∴∠3+∠6=180°,∴∠6=180°﹣∠3=75°,∴∠4=∠6=75°,故答案为:75°.【知识点】平行线的判定与性质10.如图,将一个矩形纸片沿BC折叠,若∠ABC=24°,则∠ACD的度数为.【答案】132°【分析】根据平行线的性质可得∠ABC=∠1=24°,根据折叠可得∠2=24°,然后再算∠ACD的度数即可.【解答】解:∵AB∥CD,∴∠ABC=∠1=24°,由折叠得:∠1=∠2=24°,∴∠ACD=180°﹣24°﹣24°=132°,故答案为:132°.【知识点】平行线的性质11.如图,AB∥CD,BP和CP分别平分∠ABC和∠DCB,AD过点P,且与AB垂直.若AD=10,则点P到BC的距离是.【答案】5【分析】作PE⊥BC于E,根据平行线的性质得到AD⊥CD,根据角平分线的性质计算,得到答案.【解答】解:过点P作PE⊥BC于E,∵AB∥CD,AD⊥AB,∴AD⊥CD,∵BP和CP分别平分∠ABC和∠DCB,AD⊥AB,AD⊥CD,PE⊥BC,∴PA=PE=PD,∵AD=10,∴PE=5,即点P到BC的距离是5,故答案为:5.【知识点】平行线的性质、角平分线的性质12.如图,点F在∠BAC的平分线AP上,点E在AB上,且EF∥AC,若∠BEF=40°,则∠AFE=°.【答案】20【分析】根据平行线的性质和角平分线的性质,可以得到∠AFE的度数.【解答】解:∵AP平分∠BAC,∴∠BAP=∠CAP,∵EF∥AC,∴∠EFA=∠CAP,∴∠BAP=∠EFA,∵∠BEF=40°,∠BEF=∠BAP+∠EFA,∴∠BAP=∠EFA=20°,即∠AFE=20°,故答案为:20.【知识点】平行线的性质13.如图,直线AB、CD相交于点O,射线OM平分∠AOC,∠MON=90°.若∠MOC=35°,则∠BON的度数为.【答案】55°【分析】根据角平分线的定义求出∠MOA的度数,根据邻补角的性质计算即可.【解答】解:∵射线OM平分∠AOC,∠MOC=35°,∴∠MOA=∠MOC=35°,∵∠MON=90°,∴∠BON=180°﹣∠MON﹣∠MOA=180°﹣90°﹣35°=55°.故选:55°.【知识点】余角和补角、对顶角、邻补角、角平分线的定义14.如图,∠ABC的平分线BF与△ABC中∠ACB的相邻外角∠ACG的平分线CF相交于点F,过F作DF∥BC,交AB于D,交AC于E,若BD=9cm,DE=4cm,求CE的长为cm.【答案】5【分析】只要证明△BDF和△CEF为等腰三角形,即可解决问题.【解答】证明:∵BF、CF分别平分∠ABC、∠ACG,∴∠DBF=∠CBF,∠FCE=∠FCG,∵DE∥BC,∴∠DFB=∠CBF,∠EFC=∠FCG,∴∠DBF=∠DFB,∠FCE=∠EFC,∴BD=FD,EF=CE,∴△BDF和△CEF为等腰三角形;∵DF=BD,CE=EF,∴BD﹣CE=FD﹣EF=DE,∴EF=DF﹣DE=BD﹣DE=9﹣4=5(cm),∴EC=5(cm),故答案为:5.【知识点】等腰三角形的判定与性质、平行线的性质15.如图,三角形ABC中,D是AB上一点,F是BC上一点,E,H是AC上的点,EF的延长线交AB的延长线于点G,连接DE,DH,DE∥BC.若∠CEF=∠CHD,∠EFC=∠ADH,∠CEF:∠EFC=5:2,∠C=47°,则∠ADE的度数为.【答案】76°【分析】根据平行线的性质和三角形的内角和解答即可.【解答】解:∵∠CEF=∠CHD,∴DH∥GE,∴∠ADH=∠G,∵∠EFC=∠ADH,∵∠BFG=∠EFC,∴∠G=∠BFG,∴∠ABC=∠G+∠BFG=2∠EFC,∵∠CEF:∠EFC=5:2,∠C=47°,∴∠EFC=38°,∴∠ABC=76°,∵DE∥BC,∴∠ADE=∠ABC=76°,故答案为:76°.【知识点】平行线的性质16.如图所示,把长方形纸片ABCD纸沿对角线折叠,若∠BDE=20°,那么∠BED=.【答案】140°【分析】由AD∥BC,利用“两直线平行,内错角相等”可得出∠CBD的度数,由折叠的性质可得出∠EBD的度数,结合∠CBE=∠CBD+∠EBD可得出∠CBE的度数,由AD∥BC,利用“两直线平行,同旁内角互补”可求出∠BED的度数.【解答】解:∵AD∥BC,∴∠CBD=∠BDE=20°.由折叠的性质可知:∠EBD=∠CBD=20°,∴∠CBE=∠CBD+∠EBD=40°.∵AD∥BC,∴∠BED=180°﹣∠CBE=140°.故答案为:140°.【知识点】平行线的性质、翻折变换(折叠问题)17.如图,下列结论:①∠2与∠3是内错角;②∠2与∠B是同位角;③∠A与∠B是同旁内角;④∠A与∠ACB不是同旁内角,其中正确的是(只填序号).【答案】①②③【分析】根据同位角、内错角、同旁内角的意义,结合图形逐个判断即可.【解答】解:∠2与∠3是直线AB、直线BC,被直线CD所截的一对内错角,因此①符合题意;∠2与∠B是直线CD、直线BC,被直线AB所截的一对同位角,因此②符合题意;∠A与∠B是直线AC、直线BC,被直线AB所截的一对同旁内角,因此③符合题意,∠A与∠ACB是直线AB、直线BC,被直线AC所截的一对同旁内角,因此④不符合题意,故答案为:①②③.【知识点】同位角、内错角、同旁内角18.如图,AE∥CF,∠ACF的平分线交AE于点B,G是CF上的一点,∠GBE的平分线交CF于点D,且BD⊥BC,下列结论:①BC平分∠ABG;②AC∥BG;③与∠DBE互余的角有2个;④若∠A=α,则∠BDF=.其中正确的有.(把你认为正确结论的序号都填上)【答案】①②④【分析】求出∠EBD+∠ABC=90°,∠DBG+∠CBG=90°,求出∠ABC=∠GBC,根据角平分线的定义即可判断①;根据平行线的性质得出∠ABC=∠BCG,求出∠ACB=∠GBC,根据平行线的判定即可判断②;根据余角的定义即可判断③;根据平行线的性质得出∠EBG=∠A=α,求出∠EBD=EBG=,根据平行线的性质得出∠EBD+∠BDF=180°,即可判断④.【解答】解:∵BD⊥BC,∴∠DBC=90°,∴∠EBD+∠ABC=180°﹣90°=90°,∠DBG+∠CBG=90°,∵BD平分∠EBG,∴∠EBD=∠DBG,∴∠ABC=∠GBC,即BC平分∠ABG,故①正确;∵AE∥CF,∴∠ABC=∠BCG,∵CB平分∠ACF,∴∠ACB=∠BCG,∵∠ABC=∠GBC,∴∠ACB=∠GBC,∴AC∥BG,故②正确;与∠DBE互余的角有∠ABC,∠CBG,∠ACB,∠BCG,共4个,故③错误;∵AC∥BG,∠A=α,∴∠EBG=∠A=α,∵∠EBD=∠DBG,∴∠EBD=EBG=,∵AB∥CF,∴∠EBD+∠BDF=180°,∴∠BDF=180°﹣∠EBD=180°﹣,故④正确;故答案为:①②④.【知识点】平行线的判定与性质、余角和补角三、解答题(共7小题)19.如图,在△ABC的三边上有D,E,F三点,点G在线段DF上,∠1与∠2互补,∠3=∠C.(1)若∠C=40°,求∠BFD的度数;(2)判断DE与BC的位置关系,并说明理由.【分析】(1)由∠1与∠2互补,利用“同旁内角互补,两直线平行”可得出AC∥DF,再利用“两直线平行,同位角相等”可求出∠BFD的度数;(2)由(1)可知∠BFD=∠C,结合∠C=∠3可得出∠BFD=∠3,再利用“内错角相等,两直线平行”即可找出DE∥BC.【解答】解:(1)∵∠1与∠2互补,∴AC∥DF,∴∠BFD=∠C=40°;(2)DE∥BD,理由如下:由(1)可知:∠BFD=∠C,∵∠C=∠3,∴∠BFD=∠3,∴DE∥BC.【知识点】平行线的判定与性质20.如图,△ABC中,AD平分∠BAC,P为AD延长线上一点,PE⊥BC于E,已知∠ACB=80°,∠B=24°,求∠P的度数.【分析】在△ABC中,利用三角形内角和定理可求出∠BAC的度数,结合角平分线的定义可得出∠CAD的度数,在△ACD中,利用三角形内角和定理可求出∠ADC的度数,结合对顶角相等可得出∠PDE的度数,再在△PDE中利用三角形内角和定理可求出∠P的度数.【解答】解:在△ABC中,∠ACB=80°,∠B=24°,∴∠BAC=180°﹣∠ACB﹣∠B=76°.∵AD平分∠BAC,∴∠CAD=∠BAC=38°.在△ACD中,∠ACD=80°,∠CAD=38°,∴∠ADC=180°﹣∠ACD﹣∠CAD=62°,∴∠PDE=∠ADC=62°.∵PE⊥BC于E,∴∠PED=90°,∴∠P=180°﹣∠PDE﹣∠PED=28°.【知识点】三角形内角和定理、角平分线的定义、对顶角、邻补角21.已知:如图∠AED=∠C,∠DEF=∠B,请你说明∠1与∠2相等吗?为什么?解:因为∠AED=∠C(已知)所以∥()所以∠B+∠BDE=180°()因为∠DEF=∠B(已知)所以∠DEF+∠BDE=180°()所以∥()所以∠1=∠2().【答案】【第1空】DE

【第2空】BC

【第3空】同位角相等,两直线平行

【第4空】两直线平行,同旁内角互补

【第5空】等量代换

【第6空】EF

【第7空】AB

【第8空】同旁内角互补,两直线平行,

【第9空】两直线平行,内错角相等【分析】先判断出DE∥BC得出∠B+∠BDE=180°,再等量代换,即可判断出EF∥AB即可.【解答】解:因为∠AED=∠C(已知)所以DE∥BC(同位角相等,两直线平行)所以∠B+∠BDE=180°(两直线平行,同旁内角互补)因为∠DEF=∠B(已知)所以∠DEF+∠BDE=180°(等量代换)所以EF∥AB(同旁内角互补,两直线平行)所以∠1=∠2(两直线平行,内错角相等).故答案为:DE,BC,同位角相等,两直线平行,两直线平行,同旁内角互补,等量代换EF,AB,同旁内角互补,两直线平行,两直线平行,内错角相等.【知识点】平行线的判定与性质22.如图,已知∠1+∠2=180°,∠3=∠B,判断∠AED与∠C的大小关系.阅读下面的解答过程,填空并填写理由.解:∵∠1+∠2=180°(已知),∠1+∠4=180°(邻补角定义),∴∠2=∠4().∴AB∥EF().∴∠3=().又∵∠3=∠B(已知),∴()=∠B(等量代换).∴DE∥BC().∴∠AED=∠C().【答案】【第1空】同角的补角相等

【第2空】内错角相等,两直线平行

【第3空】∠ADE

【第4空】∠ADE

【第5空】同位角相等,两直线平行

【第6空】两直线平行,同位角相等【分析】根据平行线的判定与性质即可完成填空.【解答】解:∵∠1+∠2=180°(已知),∠1+∠4=180°(邻补角定义),∴∠2=∠4(同角的补角相等).∴AB∥EF(内错角相等,两直线平行).∴∠3=∠ADE.又∵∠3=∠B(已知),∴∠ADE=∠B(等量代换).∴DE∥BC(同位角相等,两直线平行).∴∠AED=∠C(两直线平行,同位角相等)故答案为:同角的补角相等,内错角相等,两直线平行;∠ADE,∠ADE,同位角相等,两直线平行;两直线平行,同位角相等.【知识点】平行线的判定与性质23.探究:如图①,直线AB、BC、AC两两相交,交点分别为点A、B、C,点D在线段AB上,过点D作DE∥BC交AC于点E,过点E作EF∥AB交BC于点F,若∠ABC=50°,求∠DEF的度数.请将下面的解答过程补充完整,并填空解:∵DE∥BC∴∠DEF=.()∵EF∥AB,∴=∠ABC.()∴∠DEF=∠ABC.(等量代换)∵∠ABC=50°,∴∠DEF=.应用:如图②,直线AB,BC,AC两两相交,交点分别为A、B、C,点D在线段AB的延长线上,过点D作DE∥BC交AC于点E,过点E作EF∥AB交BC于点F,若∠ABC=65°,则∠DEF=.【答案】【第1空】∠EFC

【第2空】两直线平行,内错角相等

【第3空】∠EFC

【第4空】两直线平行,同位角相等

【第5空】50°

【第6空】115°【分析】探究:依据两直线平行,内错角相等;两直线平行,同位角相等,即可得到∠DEF=50°.应用:依据两直线平行,同位角相等;两直线平行,同旁内角互补,即可得到∠DEF=180°﹣65°=115°.【解答】解:探究:∵DE∥BC,∴∠DEF=∠EFC.(两直线平行,内错角相等)∵EF∥AB,∴∠EFC=∠ABC.(两直线平行,同位角相等)∴∠DEF=∠ABC.(等量代换)∵∠ABC=50°,∴∠DEF=50°.故答案为:∠EFC,两直线平行,内错角相等,∠EFC,两直线平行,同位角相等,50°;应用:∵DE∥BC,∴∠ABC=∠ADE=60°.(两直线平行,同位角相等)∵EF∥AB,∴∠ADE+∠DEF=180°.(两直线平行,同旁内角互补)∴∠DEF=180°﹣65°=115°.故答案为:115°.【知识点】平行线的性质、相交线24.已知点A在射线CE上,∠BDA=∠C.(1)如图1,若AC∥BD,求证:AD∥BC;(2)如图2,若∠BAC=∠BAD,BD⊥BC,请证明∠DAE+2∠C=90°;(3)如图3,在(2)的条件下,过点D作DF∥BC交射线CE于点F,当∠DFE=8∠DAE时,求∠BAD的度数.(直接写出结果)【分析】(1)根据AC∥BD,可得∠DAE=∠C,再根据∠C=∠D,即可得到∠DAE=∠D,则结论得证;(2)根据∠CGB是△ADG是外角,即可得到∠CGB=∠D+∠DAE,再根据△BCG中,∠CGB+∠C=90°,即可得到∠D+∠DAE+∠C=90°,进而得出2∠C+∠DAE=90°;(3)设∠DAE=α,则∠DFE=8α,∠AFD=180°﹣8α,根据DF∥BC,即可得到∠C=∠AFD=180°﹣8α,再根据2∠C+∠DAE=90°,即可得到2(180°﹣8α)+α=90°,求得α的值,由三角形内角和定理得到∠BAD的度数.【解答】(1)证明:∵AC∥BD,∴∠DAE=∠BDA,∵∠BDA=∠C,∴∠DAE=∠C,∴AD∥BC;(2)证明:如图2,设CE与BD相交于点G,∠BGA=∠BDA+DAE,∵BD⊥BC,∴∠BGA+∠C=90°,∴∠BDA+∠DAE+∠C=90°,∵∠BDA=∠C,∴∠DAE+2∠C=90°;(3

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论