版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
November2024
Anew
goldenageofdiscovery
SeizingtheAIforScienceopportunity
ConorGriffin|DonWallace|JuanMateos-Garcia|HannaSchieve|PushmeetKohli
Acknowledgements
ThankyoutoLouisaBartolo,ZoëBrammerandNickSwansonforresearchsupport,andtothefollowingindividualswhosharedinsightswithusthroughinterviewsand/orfeedbackonthedraft.Allviews,andanymistakes,belongsolelytotheauthors.
ŽigaAvsec,NicklasLundblad,JohnJumper,MattClifford,BenSouthwood,CraigDonner,JoëlleBarral,TomZahavy,BeenKim,SebastianNowozin,MattClancy,MatejBalog,JenniferBeroshi,NitarshanRajkumar,BrendanTracey,YannisAssael,MassimilianoCiaramita,MichaelWebb,AgnieszkaGrabska-Barwinska,
AlessandroPau,TomLue,AgataLaydon,AnnaKoivuniemi,AbhishekNagaraj,HarryLaw,TomWestgarth,GuyWard-Jackson,AriannaManzini,StefanoBianchini,SameerVelankar,AnkurVora,SébastienKrier,
JoelZLeibo,ElisaLaiH.Wong,BenJohnson,DavidOsimo,AndreaHuber,DipanjanDas,EkinDogusCubuk,JacklynnStott,KelvinGuu,KiranVodrahalli,SanilJain,TrieuTrinh,RebecaSantamaria-Fernandez,
RemiLam,VictorMartin,NeelNanda,NenadTomasev,ObumEkeke,UchechiOkereke,FrancescaPietra,RishabhAgarwal,PeterBattaglia,AnilDoshi,YianYin.
GoogleDeepMind2
Introduction
GoogleDeepMind3
Introduction
PartA:Theopportunities
PartB:Theingredients
PartC:Therisks
PartD:Thepolicyresponse
Introduction
Aquietrevolutionisbrewinginlabsaroundtheworld,wherescientists’useofAIis
growing
exponentially
.
Oneinthreepostdocs
nowuselargelanguagemodelstohelpcarryoutliterature
reviews,coding,andediting.InOctober,thecreatorsofour
AlphaFold2
system,DemisHassabisandJohnJumperbecame
Nobel
LaureatesinChemistryforusingAItopredictthestructureofproteins,alongsidethescientistDavidBaker,forhisworktodesignnewproteins.Societywillsoonstarttofeelthesebenefitsmoredirectly,with
drugs
and
materials
designedwiththehelpofAIcurrentlymakingtheirwaythroughdevelopment.
Inthisessay,wetakeatourofhowAIistransformingscientificdisciplinesfromgenomicstocomputersciencetoweatherforecasting.SomescientistsaretrainingtheirownAImodels,whileothersarefine-tuningexistingAImodels,orusingthesemodels’predictionstoacceleratetheirresearch.Scientists
areusingAIasascientificinstrumenttohelptackleimportantproblems,suchas
designingproteinsthat
bindmoretightlytodiseasetargets
,butarealsograduallytransforminghowscienceitselfispractised.
Thereisagrowingimperativebehindscientists’embraceofAI.Inrecentdecades,scientistshave
continuedtodeliverconsequentialadvances,fromCovid-19vaccinestorenewableenergy.Butit
takes
aneverlargernumberofresearcherstomakethesebreakthroughs
,andto
transformtheminto
downstreamapplications
.Asaresult,eventhoughthescientificworkforcehasgrownsignificantly
overthepasthalf-century,
risingmorethan
sevenfold
intheUSalone,thesocietalprogressthat
wewouldexpecttofollow,hasslowed.Forinstance,muchoftheworldhaswitnesseda
sustained
slowdown
inproductivitygrowththatisunderminingthequalityofpublicservices.Progresstowardsthe2030SustainableDevelopmentGoals,whichcapturethebiggestchallengesinhealth,the
environment,andbeyond,is
stalling
.
Inparticular,scientistslookingtomakebreakthroughstodayincreasinglyrunintochallengesrelatingtoscaleandcomplexity,fromtheever-growingliteraturebasetheyneedtomaster,totheincreasinglycomplexexperimentstheywanttorun.
M
oderndeeplearningmethods
areparticularlywell-suited
tothese
scaleandcomplexitychallenges
andcancompressthetimethatfuturescientificprogresswouldotherwiserequire.Forinstance,instructuralbiology,asinglex-raycrystallographyexperimenttodeterminethestructureofaprotein
cantakeyearsofworkandcostapproximately$100,000
,
dependingontheprotein.The
AlphaFoldProteinStructureDatabase
nowprovidesinstantaccessto200millionpredictedproteinstructuresforfree.
ThepotentialbenefitsofAItosciencearenotguaranteed.AsignificantshareofscientistsalreadyuseLLM-basedtoolstoassistwitheverydaytasks,suchascodingandediting,buttheshareofscientistsusingAI-centricresearchapproaches
ismuchlower,albeit
risingrapidly
.IntherushtouseAI,some
earlyscientificusecaseshavehad
questionableimpact
.PolicymakerscanhelpaccelerateAI’suseandsteerittowardshigher-impactareas.The
USDepartmentofEnergy,
the
EuropeanCommission
,theUK’s
Royal
Society,
andthe
USNationalAcademies
,amongothers,haverecentlyrecognisedtheAIforScienceopportunity.Butnocountryhasyetputacomprehensivestrategyinplacetoenableit.
GoogleDeepMind4
Introduction
PartA:Theopportunities
PartB:Theingredients
PartC:Therisks
PartD:Thepolicyresponse
Wehopeouressaycaninformsuchastrategy.Itisaimedatthosewhomakeandinfluencesciencepolicy,andfundingdecisions.Wefirstidentify5opportunitieswherethereisagrowingimperativetouseAIinscienceandexaminetheprimaryingredientsneededtomakebreakthroughsinthese
areas.Wethenexplorethemostcommonly-citedrisksfromusingAIinscience,suchastoscientificcreativityandreliability,andarguethatAIcanultimatelybenetbeneficialineacharea.WeconcludewithfourpublicpolicyideastohelpusherinanewgoldenageofAI-enabledscience.
ThroughouttheessaywedrawoninsightsfromovertwodozeninterviewswithexpertsfromourownAIforScienceprojects,aswellasexternalexperts.Theessaynaturallyreflectsourvantagepointasaprivatesectorlab,butwebelievethecasewemakeisrelevantforthewholeofscience.WehopethatreaderswillrespondbysharingtheirtakeonthemostimportantAIforScienceopportunities,
ingredients,risksandpolicyideas.
PartA:Theopportunities06
PartB:Theingredients13
PartC:Therisks25
PartD:Thepolicyresponse32
GoogleDeepMinds
PartA
The
opportunities
6
Introduction
PartA:Theopportunities
PartB:Theingredients
PartC:Therisks
PartD:Thepolicyresponse
Theopportunities
Scientistsaimtounderstand,predict,andinfluencehowthenaturalandsocialworldswork,toinspireandsatisfycuriosity,andtotackleimportantproblemsfacingsociety.
Technologiesandmethods
,
likethemicroscope,x-raydiffraction,andstatistics,arebothproductsofscienceandenablersof
it.Overthepastcentury,scientistshaveincreasinglyreliedontheseinstrumentstocarryouttheir
experimentsandadvancetheirtheories.Computationaltoolsandlarge-scaledataanalysishave
becomeparticularlyimportant,enablingeverythingfromthediscoveryoftheHiggsbosontothe
mappingofthehumangenome.Fromoneview,scientists’growinguseofAIisalogicalextensionofthislong-runningtrend.Butitmayalsosignalsomethingmuchmoreprofound-adiscontinuousleapinthelimitsofwhatscienceiscapableof.
RatherthanlistingallareaswhereitispossibletouseAI,wehighlightfiveopportunitieswherewethinkthereisanimperativetouseit.Theseopportunitiesapplyacrossdisciplinesandaddressaspecific
bottleneck,relatedtoscaleandcomplexity,thatscientistsincreasinglyfaceatdifferentpointsinthescientificprocess,fromgeneratingpowerfulnovelhypothesestosharingtheirworkwiththeworld.
5opportunitiestoacceleratesciencewithAl
1.Knowledge2.Data3.Experiments
TransformhowscientistsdigestGenerate,extract,andannotateSimulate,accelerateandinform
andcommunicateknowledgelargescientificdatasetscomplexexperiments
Q
4.Models5.Solutions
ModelcomplexsystemsandhowIdentifynovelsolutionstoproblems
theircomponentsinteractwithlargesearchspaces
GoogleDeepMind7
Introduction
PartA:Theopportunities
PartB:Theingredients
PartC:Therisks
PartD:Thepolicyresponse
1.Knowledge
Transformhowscientistsdigestandcommunicateknowledge
Tomakenewdiscoveries,scientistsneedtomasterapre-existingbodyofknowledgethatcontinuestogrow
exponentially
andbecomeevermorespecialised.This
‘burdenofknowledge
’helpsexplainwhyscientists
making
transformative
discoveries
areincreasinglyolder,interdisciplinary,andlocatedateliteuniversities,andwhythe
shareofpapers
authoredbyindividuals,orsmallteams,isdeclining,eventhough
smallteamsareoftenbetter-placedtoadvancedisruptivescientificideas
.Whenit
comestosharingtheirresearchtherehavebeenwelcomeinnovationssuchaspreprintserversandcoderepositories,butmostscientistsstillsharetheirfindingsin
dense,jargon-heavy,
English-only
papers
.Thiscanimpederatherthanigniteinterestinscientists’work,includingfrompolicymakers,businesses,andthepublic.
ScientistsarealreadyusingLLMs,andearlyscientificassistantsbasedonLLMs,tohelpaddress
thesechallenges,suchasby
synthesisingthemostrelevantinsights
fromtheliterature.Inanearly
demonstration
,ourScienceteam
usedour
Gemini
LLMtofind,extract,andpopulatespecificdatafromthemostrelevantsubsetof200,000papers,withinaday.Upcominginnovations,suchasfine-tuningLLMsonmorescientificdataandadvancesinlongcontextwindowsandcitationuse,will
steadilyimprovethesecapabilities.Asweexpandonbelow,theseopportunitiesarenotwithoutrisk.Buttheyprovideawindowtofundamentallyrethinkcertainscientifictasks,suchaswhatitmeansto‘read’or‘write’ascientificpaperinaworldwhereascientistcanuseanLLMtohelpcritiqueit,tailoritsimplicationsfordifferentaudiences,ortransformitintoan‘interactivepaper’or
audioguide
.
2.Data
Generate,extract,andannotatelargescientificdatasets
Despitepopularnarrativesaboutaneraofdataabundance,thereisachroniclackofscientificdataonmostofthenaturalandsocialworld,fromthesoil,deepoceanandatmosphere,totheinformaleconomy.AIcouldhelpindifferentways.Itcouldmakeexistingdatacollectionmoreaccurate,forexampleby
reducingthenoiseanderrorsthatcanoccurwhen
sequencingDNA
,
detectingcelltypesinasample,
or
capturinganimalsounds
.ScientistscanalsoexploitLLMs’growingabilitytooperateacrossimages,videoandaudio,toextracttheunstructuredscientificdatathatisburiedinscientificpublications,
archives,andlessobviousresourcessuchasinstructionalvideos,andconvertitintostructureddatasets.
AIcanalsohelptoannotatescientificdatawiththesupportinginformationthatscientistsneedinordertouseit.Forexample,atleastone-thirdofmicrobialproteins
arenotreliablyannotated
withdetailsaboutthefunction(s)thattheyarethoughttoperform.In2022,ourresearchers
usedAIto
predictthefunctionofproteins
,leadingtonewentriesinthe
UniProt
,
Pfam
and
InterPro
databases.
GoogleDeepMind8
Introduction
PartA:Theopportunities
PartB:Theingredients
PartC:Therisks
PartD:Thepolicyresponse
AImodels,oncevalidated,canalsoserveasnewsourcesofsyntheticscientificdata.Forexample,our
AlphaProteo
proteindesignmodelistrainedonmorethan100millionAI-generatedprotein
structuresfromAlphaFold2,alongwithexperimentalstructuresfromthe
ProteinDataBank
.TheseAIopportunitiescancomplementandincreasethereturnonothermuch-neededeffortstogeneratescientificdata,suchas
digitisingarchives
,orfundingnewdatacapturetechnologiesandmethods,likeeffortsunderwayinsinglecellgenomicstocreatepowerfuldatasetsofindividualcellsin
unprecedenteddetail.
3.Experiments
Simulate,accelerateandinformcomplexexperiments
Manyscientificexperimentsareexpensive,complex,andslow.Somedonothappenatallbecauseresearcherscannotaccessthefacilities,participantsorinputsthattheyneed.Fusionisacase
inpoint.Itpromisesanenergysourcethatispracticallylimitless,emission-freeandcouldenable
thescalingofenergy-intensiveinnovations,likedesalination.Torealisefusion,scientistsneedto
createandcontrolplasma-afourthfundamentalstateofmatter.However,thefacilitiesneededarehugelycomplextobuild.
ITER
’sprototypetokamakreactorbeganconstructionin2013,butplasmaexperimentsare
notsettobegin
untilthemid-2030sattheearliest,althoughothershopetobuildsmallerreactorsonshortertimelines.
AIcouldhelptosimulatefusionexperimentsandenablemuchmoreefficientuseofsubsequentexperimenttime.Oneapproachistorunreinforcementlearningagentsonsimulationsofphysicalsystems.Between2019and2021,ourresearcherspartneredwiththeSwissFederalInstituteof
TechnologyLausanneto
demonstrate
howtouseRLtocontroltheshapeofplasmainasimulationofatokamakreactor.Theseapproachescouldbeextendedtootherexperimentalfacilities,suchas
particleaccelerators
,
telescopearrays
,or
gravitationalwavedetectors
.
UsingAItosimulateexperimentswilllookverydifferentacrossdisciplines,butacommonthreadis
thatthesimulationswillofteninformandguidephysicalexperiments,ratherthansubstituteforthem.Forexample,theaverageperson
hasmorethan9,000
missensevariants,orsinglelettersubstitutionsintheirDNA.Mostofthesegeneticvariantsarebenignbutsomecandisruptthefunctionsthat
proteinsperform,contributingtoraregeneticdiseaseslikecysticfibrosisaswellascommondiseaseslikecancer.Physicalexperimentstotesttheeffectsofthesevariantsareoftenlimitedtoasingle
protein.Our
AlphaMissensemodel
classifies89%ofthe71millionpotentialhumanmissensevariants
aslikelyharmfulorbenign,enablingscientiststofocustheirphysicalexperimentsonthemostlikelycontributorstodisease.
GoogleDeepMind9
Introduction
PartA:Theopportunities
PartB:Theingredients
PartC:Therisks
PartD:Thepolicyresponse
Allpossible71millionhumanmissensevariants
AlphaMissensepredictions:
Likelybenign57%
Likelypathogenic
32%
.Uncertain
11%
Humanannotations:
Seeninhumans~6%
Confirmedbyhumanexperts~0.1%
AlphaMissensepredictedthepathogenicityofallpossible71millionmissensevariants.Itclassified89%
-predicting57%werelikelybenignand32%werelikelypathogenic.
4.Models
Modelcomplexsystemsandhowtheircomponentsinteract
Ina
1960paper,
theNobelPrizewinningphysicistEugeneWignermarvelledatthe“unreasonable
effectiveness”ofmathematicalequationsformodellingimportantnaturalphenomena,suchas
planetarymotion.However,overthepasthalfcentury,modelsthatrelyonsetsofequationsor
otherdeterministicassumptionshavestruggledtocapture
thefullcomplexityofsystemsinbiology,
economics,weather,andelsewhere
.Thisreflectsthesheernumberofinteractingpartsthatmakeupthesesystems,aswellastheirdynamismandpotentialforemergent,randomorchaoticbehaviour.Thechallengesinmodellingthesesystemsimpedesscientists’abilitytopredictorcontrolhowtheywillbehave,includingduringshocksorinterventions,suchasrisingtemperatures,anewdrug,ortheintroductionofataxchange.
GoogleDeepMind10
Introduction
PartA:Theopportunities
PartB:Theingredients
PartC:Therisks
PartD:Thepolicyresponse
AIcouldmoreaccuratelymodelthesecomplexsystemsbyingestingmoredataaboutthem,andlearningmorepowerfulpatternsandregularitieswithinthisdata.Forexample,modernweather
forecastingisatriumphofscienceandengineering.Forgovernmentsandindustry,itinforms
everythingfromrenewableenergyplanningtopreparingfor
hurricanes
and
floods
.Forthepublic,
theweatheristhemostpopularnon-brandedqueryonGoogleSearch.Traditional
numeralprediction
methods
arebasedoncarefully-definedphysicsequationsthatprovideaveryuseful,yetimperfect,approximationoftheatmosphere’scomplexdynamics.Theyarealsocomputationallyexpensiveto
run.In2023,wereleaseda
deeplearningsystem
thatpredictsweatherconditionsupto10daysinadvance,whichoutperformedtraditionalmodelsonaccuracyandpredictionspeed.Asweexpandonbelow,usingAItoforecastweathervariablescouldalsohelptomitigateandrespondtoclimatechange.Forinstance,whenpilotsflythroughhumidregionsitcancausecondensationtrailsthat
contributeto
aviation’sglobalwarmingimpact.Googlescientists
recentlyused
AItopredictwhenandwherehumidregionsmayarisetohelppilotsavoidflyingthroughthem.
Inmanycases,AIwillenrichtraditionalapproachestomodellingcomplexsystemsratherthanreplacethem.Forexample,agent-basedmodellingsimulatesinteractionsbetweenindividualactors,like
firmsandconsumers,tounderstandhowtheseinteractionsmightaffectalargermorecomplex
systemliketheeconomy.Traditionalapproachesrequirescientiststospecifybeforehandhowthesecomputationalagentsshouldbehave.Ourresearchteams
recentlyoutlined
howscientistscoulduseLLMstocreatemoreflexiblegenerativeagentsthatcommunicateandtakeactions,suchassearchingforinformationormakingpurchases,whilealsoreasoningaboutandrememberingtheseactions.
Scientistscouldalsousereinforcementlearningtostudyhowtheseagentslearnandadapttheirbehaviourin
moredynamicsimulations
,forexampleinresponsetotheintroductionofnewenergypricesorpandemicresponsepolicies.
5.Solutions
Identifynovelsolutionstoproblemswithlargesearchspaces
Manyimportantscientificproblemscomewithapracticallyincomprehensiblenumberofpotential
solutions.Forexample,biologistsandchemistsaimtodeterminethestructure,characteristics,andfunction(s)ofmoleculessuchasproteins.Onegoalofsuchworkistohelpdesignnovelversionsofthesemoleculestoserveasantibodydrugs,plastic-degradingenzymesornewmaterials.However,todesignasmallmoleculedrug,scientistsface
morethan10
60
potentialoptions.Todesignaproteinwith400standardaminoacids,theyface20400options.Theselargesearchspacesarenotlimitedtomoleculesbutarecommonplaceformanyscientificproblems,suchasfindingthebestprooffora
mathsproblem,themostefficientalgorithmforacomputersciencetask,orthe
bestarchitecturefor
acomputerchip
.
GoogleDeepMind11
Traditionally,scientistsrelyonsomecombinationofintuition,trialanderror,iteration,orbruteforce
computingtofindthebestmolecule,proof,oralgorithm.However,thesemethodsstruggletoexploitthehugespaceofpotentialsolutions,leavingbetteronesundiscovered.AIcan
openupnewpartsof
thesesearchspaces
whilealsohominginmorequicklyonthesolutionsthataremostlikelytobeviableanduseful-adelicatebalancingact.Forexample,inJuly,our
AlphaProofandAlphaGeometry2
systemscorrectlysolvedfouroutofsixproblemsfromthe
InternationalMathematicalOlympiad
,
anelitehighschoolcompetition.ThesystemsmakeuseofourGeminiLLMarchitecturetogeneratealargenumberofnovelideasandpotentialsolutionsforagivenmathsproblem,andcombinethiswithsystemsgroundedinmathematicallogicthatcaniterativelyworktowardsthecandidatesolutionsthataremostlikelytobecorrect.
AIscientistsorAI-empoweredscientists?
ThisgrowinguseofAIinscience,andtheemergenceofearlyAIscientificassistants,raisesquestionsabouthowfastandhowfarthecapabilitiesofAImayadvanceandwhatthiswillmeanforhuman
scientists.CurrentLLM-basedAIscientificassistantsmakearelativelysmallcontributiontoa
relativelynarrowrangeoftasks,suchassupportingliteraturereviews.Thereareplausiblenear-termscenariosinwhichtheybecomebetteratthesetasksandbecomecapableofmoreimpactfulones,suchashelpingtogeneratepowerfulhypotheses,orhelpingtopredicttheoutcomesofexperiments.
However,currentsystemsstillstrugglewiththedeepercreativityand
reasoning
thathumanscientistsrelyonforsuchtasks.
EffortsareunderwaytoimprovetheseAIcapabilities
,forexamplebycombiningLLMswithlogicaldeductionengines,asinour
AlphaProofandAlphaGeometry2
examples,butfurtherbreakthroughsareneeded.Theabilitytoaccelerateorautomateexperimentswillalsobeharderforthosethatrequirecomplicatedactionsinwetlabs,interactingwithhumanparticipants,orlengthy
processes,suchasmonitoringdiseaseprogression.Althoughagain,workisunderwayinsomeoftheseareas,suchasnewtypesoflaboratoryroboticsand
automatedlabs
.
EvenasAIsystems’capabilitiesimprove,thegreatestmarginalbenefitwillcomefromdeploying
theminusecasesthatplaytotheirrelativestrengths-suchastheabilitytorapidlyextractinformationfromhugedatasets-andwhichhelpaddressgenuinebottleneckstoscientificprogresssuchasthefiveopportunitiesoutlinedabove,ratherthanautomatingtasksthathumanscientistsalreadydowell.AsAIenablescheaperandmorepowerfulscience,demandforscienceandscientistswillalsogrow.
Forexample,recentbreakthroughshavealreadyledtoaslewofnewstartupsinareaslike
protein
design
,
materialscience
and
weatherforecasting
.Unlikeothersectors,anddespite
pastclaimstothe
contrary,
futuredemandforscienceappearspracticallylimitless.Newadvances
havealwaysopened
upnew,unpredictableregions
inthescientificmapofknowledge,andAIwilldosimilar.As
envisioned
byHerbertSimon,AIsystemswillalsobecomeobjectsofscienceresearch,withscientistssettoplayaleadingroleinevaluatingandexplainingtheirscientificcapabilities,aswellasindevelopingnew
typesofhuman-AIscientificsystems.
GoogleDeepMind12
PartB
The
ingredients
13
Introduction
PartA:Theopportunities
PartB:Theingredients
PartC:Therisks
PartD:Thepolicyresponse
Theingredients
WeareinterestedintheingredientsthatambitiousAIforScienceeffortsneedtosucceed-bothat
theindividualresearcheffortlevelandatthelevelofthescienceecosystem,wherepolicymakershavemorescopetoshapethem.Theexpertsthatweinterviewedroutinelycitedseveralingredientsthat
weorganisedintoatoymodel,whichwecalltheAIforScienceproductionfunction.Thisproductionfunctionisnotmeanttobeexhaustive,prescriptive,oraneatlinearprocess.Theingredientswillbeintuitivetomany,butourinterviewsrevealedanumberoflessonsaboutwhattheylooklikeinpracticewhichwesharebelow.
TheAIforscienceproductionfunction
Startingpoint
InfrastructureDoingtheresearch
Drivingimpact
Adoption
Partnerships
Safety&responsibility
Organisationaldesign
Problemselection
Interdisciplinarity
Evaluations
Compute
Data
GoogleDeepMind14
Introduction
PartA:Theopportunities
PartB:Theingredients
PartC:Therisks
PartD:Thepolicyresponse
1.Problemselection
Pursueambitious,AI-shapedproblems
Scientificprogressrestsonbeingabletoidentifyanimportantproblemandasktherightquestion
abouthowtosolveit.In
theirexploration
intothegenesisofscientificbreakthroughs,Venkatesh
NarayanamurtiandJeffreyY.Tsaodocumenthowimportantthereciprocalandrecursiverelationshipbetweenquestionsandanswersis,includingtheimportanceofaskingambitiousnewquestions.
OurScienceteamstartsbythinkingaboutwhetherapotentialresearchproblemissignificantenoughtojustifyasubstantialinvestmentoftimeandresources.OurCEODemisHassabishasamentalmodeltoguidethisassessment:thinkingaboutallofscienceasatreeofknowledge.Weareparticularly
interestedintheroots-fundamental‘rootnodeproblems’like
proteinstructureprediction
or
quantumchemistry
that,ifsolved,couldunlockentirelynewbranchesofresearchandapplications.
ToassesswhetherAIwillbesuitableandadditive,welookforproblemswithcertaincharacteristics,
suchashugecombinatorialsearchspaces,largeamountsofdata,andaclearobjectivefunctionto
benchmarkperformanceagainst.OftenaproblemissuitableforAIinprinciple,buttheinputsaren’t
yetinplaceanditneedstobestoredforlater.Oneoftheoriginal
inspirations
forAlphaFoldwas
conversationsthatDemishadmanyyearspriorasastudentwithafriendwhowasobsessedwith
theproteinfoldingproblem.Manyrecentbreakthroughsalsofeaturethiscomingtogetherofan
importantscientificproblemandanAIapproachthathasreachedapointofmaturity.Forexample,
our
fusion
effortwasaidedbyanovel
reinforcementlearningalgorithm
calledmaximumaposteriori
policyoptimization,whichhadonlyjustbeenreleas
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年过路权共享协议3篇
- 矿业公司勘探数据保密办法
- 国际贸易信息系统问题应对方案
- 冰球场装修合同
- 高新技术产业区二手房买卖范本
- 图书馆清洁保养保洁员合同
- 物联网高空作业合同
- 稀土材料集中采购管理办法
- 烟草市场监督指南
- 债权股权转化合同
- 普法学法知识考试题库(100题附答案)
- 2022-2024北京八年级(上)期末地理汇编:交通运输
- DB37-T 1722-2024公路工程高性能沥青混合料施工技术规范
- 四年级数学上册期末试卷
- 《会计工作经历证明模板》
- 2023年黑龙江民族职业学院招聘工作人员考试真题
- 北京林业大学《计算机网络安全》2023-2024学年期末试卷
- 2025届重庆康德卷生物高一上期末学业质量监测试题含解析
- 初中七年级数学运算能力培养策略(课件)
- 2024-2025学年九年级化学人教版上册检测试卷(1-4单元)
- 北京市东城区2023-2024学年高二上学期期末考试+英语 含答案
评论
0/150
提交评论