抓住人工智能科学机遇 A new golden age of discovery Seizing the AI for Science opportunity 2024_第1页
抓住人工智能科学机遇 A new golden age of discovery Seizing the AI for Science opportunity 2024_第2页
抓住人工智能科学机遇 A new golden age of discovery Seizing the AI for Science opportunity 2024_第3页
抓住人工智能科学机遇 A new golden age of discovery Seizing the AI for Science opportunity 2024_第4页
抓住人工智能科学机遇 A new golden age of discovery Seizing the AI for Science opportunity 2024_第5页
已阅读5页,还剩66页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

November2024

Anew

goldenageofdiscovery

SeizingtheAIforScienceopportunity

ConorGriffin|DonWallace|JuanMateos-Garcia|HannaSchieve|PushmeetKohli

Acknowledgements

ThankyoutoLouisaBartolo,ZoëBrammerandNickSwansonforresearchsupport,andtothefollowingindividualswhosharedinsightswithusthroughinterviewsand/orfeedbackonthedraft.Allviews,andanymistakes,belongsolelytotheauthors.

ŽigaAvsec,NicklasLundblad,JohnJumper,MattClifford,BenSouthwood,CraigDonner,JoëlleBarral,TomZahavy,BeenKim,SebastianNowozin,MattClancy,MatejBalog,JenniferBeroshi,NitarshanRajkumar,BrendanTracey,YannisAssael,MassimilianoCiaramita,MichaelWebb,AgnieszkaGrabska-Barwinska,

AlessandroPau,TomLue,AgataLaydon,AnnaKoivuniemi,AbhishekNagaraj,HarryLaw,TomWestgarth,GuyWard-Jackson,AriannaManzini,StefanoBianchini,SameerVelankar,AnkurVora,SébastienKrier,

JoelZLeibo,ElisaLaiH.Wong,BenJohnson,DavidOsimo,AndreaHuber,DipanjanDas,EkinDogusCubuk,JacklynnStott,KelvinGuu,KiranVodrahalli,SanilJain,TrieuTrinh,RebecaSantamaria-Fernandez,

RemiLam,VictorMartin,NeelNanda,NenadTomasev,ObumEkeke,UchechiOkereke,FrancescaPietra,RishabhAgarwal,PeterBattaglia,AnilDoshi,YianYin.

GoogleDeepMind2

Introduction

GoogleDeepMind3

Introduction

PartA:Theopportunities

PartB:Theingredients

PartC:Therisks

PartD:Thepolicyresponse

Introduction

Aquietrevolutionisbrewinginlabsaroundtheworld,wherescientists’useofAIis

growing

exponentially

.

Oneinthreepostdocs

nowuselargelanguagemodelstohelpcarryoutliterature

reviews,coding,andediting.InOctober,thecreatorsofour

AlphaFold2

system,DemisHassabisandJohnJumperbecame

Nobel

LaureatesinChemistryforusingAItopredictthestructureofproteins,alongsidethescientistDavidBaker,forhisworktodesignnewproteins.Societywillsoonstarttofeelthesebenefitsmoredirectly,with

drugs

and

materials

designedwiththehelpofAIcurrentlymakingtheirwaythroughdevelopment.

Inthisessay,wetakeatourofhowAIistransformingscientificdisciplinesfromgenomicstocomputersciencetoweatherforecasting.SomescientistsaretrainingtheirownAImodels,whileothersarefine-tuningexistingAImodels,orusingthesemodels’predictionstoacceleratetheirresearch.Scientists

areusingAIasascientificinstrumenttohelptackleimportantproblems,suchas

designingproteinsthat

bindmoretightlytodiseasetargets

,butarealsograduallytransforminghowscienceitselfispractised.

Thereisagrowingimperativebehindscientists’embraceofAI.Inrecentdecades,scientistshave

continuedtodeliverconsequentialadvances,fromCovid-19vaccinestorenewableenergy.Butit

takes

aneverlargernumberofresearcherstomakethesebreakthroughs

,andto

transformtheminto

downstreamapplications

.Asaresult,eventhoughthescientificworkforcehasgrownsignificantly

overthepasthalf-century,

risingmorethan

sevenfold

intheUSalone,thesocietalprogressthat

wewouldexpecttofollow,hasslowed.Forinstance,muchoftheworldhaswitnesseda

sustained

slowdown

inproductivitygrowththatisunderminingthequalityofpublicservices.Progresstowardsthe2030SustainableDevelopmentGoals,whichcapturethebiggestchallengesinhealth,the

environment,andbeyond,is

stalling

.

Inparticular,scientistslookingtomakebreakthroughstodayincreasinglyrunintochallengesrelatingtoscaleandcomplexity,fromtheever-growingliteraturebasetheyneedtomaster,totheincreasinglycomplexexperimentstheywanttorun.

M

oderndeeplearningmethods

areparticularlywell-suited

tothese

scaleandcomplexitychallenges

andcancompressthetimethatfuturescientificprogresswouldotherwiserequire.Forinstance,instructuralbiology,asinglex-raycrystallographyexperimenttodeterminethestructureofaprotein

cantakeyearsofworkandcostapproximately$100,000

,

dependingontheprotein.The

AlphaFoldProteinStructureDatabase

nowprovidesinstantaccessto200millionpredictedproteinstructuresforfree.

ThepotentialbenefitsofAItosciencearenotguaranteed.AsignificantshareofscientistsalreadyuseLLM-basedtoolstoassistwitheverydaytasks,suchascodingandediting,buttheshareofscientistsusingAI-centricresearchapproaches

ismuchlower,albeit

risingrapidly

.IntherushtouseAI,some

earlyscientificusecaseshavehad

questionableimpact

.PolicymakerscanhelpaccelerateAI’suseandsteerittowardshigher-impactareas.The

USDepartmentofEnergy,

the

EuropeanCommission

,theUK’s

Royal

Society,

andthe

USNationalAcademies

,amongothers,haverecentlyrecognisedtheAIforScienceopportunity.Butnocountryhasyetputacomprehensivestrategyinplacetoenableit.

GoogleDeepMind4

Introduction

PartA:Theopportunities

PartB:Theingredients

PartC:Therisks

PartD:Thepolicyresponse

Wehopeouressaycaninformsuchastrategy.Itisaimedatthosewhomakeandinfluencesciencepolicy,andfundingdecisions.Wefirstidentify5opportunitieswherethereisagrowingimperativetouseAIinscienceandexaminetheprimaryingredientsneededtomakebreakthroughsinthese

areas.Wethenexplorethemostcommonly-citedrisksfromusingAIinscience,suchastoscientificcreativityandreliability,andarguethatAIcanultimatelybenetbeneficialineacharea.WeconcludewithfourpublicpolicyideastohelpusherinanewgoldenageofAI-enabledscience.

ThroughouttheessaywedrawoninsightsfromovertwodozeninterviewswithexpertsfromourownAIforScienceprojects,aswellasexternalexperts.Theessaynaturallyreflectsourvantagepointasaprivatesectorlab,butwebelievethecasewemakeisrelevantforthewholeofscience.WehopethatreaderswillrespondbysharingtheirtakeonthemostimportantAIforScienceopportunities,

ingredients,risksandpolicyideas.

PartA:Theopportunities06

PartB:Theingredients13

PartC:Therisks25

PartD:Thepolicyresponse32

GoogleDeepMinds

PartA

The

opportunities

6

Introduction

PartA:Theopportunities

PartB:Theingredients

PartC:Therisks

PartD:Thepolicyresponse

Theopportunities

Scientistsaimtounderstand,predict,andinfluencehowthenaturalandsocialworldswork,toinspireandsatisfycuriosity,andtotackleimportantproblemsfacingsociety.

Technologiesandmethods

,

likethemicroscope,x-raydiffraction,andstatistics,arebothproductsofscienceandenablersof

it.Overthepastcentury,scientistshaveincreasinglyreliedontheseinstrumentstocarryouttheir

experimentsandadvancetheirtheories.Computationaltoolsandlarge-scaledataanalysishave

becomeparticularlyimportant,enablingeverythingfromthediscoveryoftheHiggsbosontothe

mappingofthehumangenome.Fromoneview,scientists’growinguseofAIisalogicalextensionofthislong-runningtrend.Butitmayalsosignalsomethingmuchmoreprofound-adiscontinuousleapinthelimitsofwhatscienceiscapableof.

RatherthanlistingallareaswhereitispossibletouseAI,wehighlightfiveopportunitieswherewethinkthereisanimperativetouseit.Theseopportunitiesapplyacrossdisciplinesandaddressaspecific

bottleneck,relatedtoscaleandcomplexity,thatscientistsincreasinglyfaceatdifferentpointsinthescientificprocess,fromgeneratingpowerfulnovelhypothesestosharingtheirworkwiththeworld.

5opportunitiestoacceleratesciencewithAl

1.Knowledge2.Data3.Experiments

TransformhowscientistsdigestGenerate,extract,andannotateSimulate,accelerateandinform

andcommunicateknowledgelargescientificdatasetscomplexexperiments

Q

4.Models5.Solutions

ModelcomplexsystemsandhowIdentifynovelsolutionstoproblems

theircomponentsinteractwithlargesearchspaces

GoogleDeepMind7

Introduction

PartA:Theopportunities

PartB:Theingredients

PartC:Therisks

PartD:Thepolicyresponse

1.Knowledge

Transformhowscientistsdigestandcommunicateknowledge

Tomakenewdiscoveries,scientistsneedtomasterapre-existingbodyofknowledgethatcontinuestogrow

exponentially

andbecomeevermorespecialised.This

‘burdenofknowledge

’helpsexplainwhyscientists

making

transformative

discoveries

areincreasinglyolder,interdisciplinary,andlocatedateliteuniversities,andwhythe

shareofpapers

authoredbyindividuals,orsmallteams,isdeclining,eventhough

smallteamsareoftenbetter-placedtoadvancedisruptivescientificideas

.Whenit

comestosharingtheirresearchtherehavebeenwelcomeinnovationssuchaspreprintserversandcoderepositories,butmostscientistsstillsharetheirfindingsin

dense,jargon-heavy,

English-only

papers

.Thiscanimpederatherthanigniteinterestinscientists’work,includingfrompolicymakers,businesses,andthepublic.

ScientistsarealreadyusingLLMs,andearlyscientificassistantsbasedonLLMs,tohelpaddress

thesechallenges,suchasby

synthesisingthemostrelevantinsights

fromtheliterature.Inanearly

demonstration

,ourScienceteam

usedour

Gemini

LLMtofind,extract,andpopulatespecificdatafromthemostrelevantsubsetof200,000papers,withinaday.Upcominginnovations,suchasfine-tuningLLMsonmorescientificdataandadvancesinlongcontextwindowsandcitationuse,will

steadilyimprovethesecapabilities.Asweexpandonbelow,theseopportunitiesarenotwithoutrisk.Buttheyprovideawindowtofundamentallyrethinkcertainscientifictasks,suchaswhatitmeansto‘read’or‘write’ascientificpaperinaworldwhereascientistcanuseanLLMtohelpcritiqueit,tailoritsimplicationsfordifferentaudiences,ortransformitintoan‘interactivepaper’or

audioguide

.

2.Data

Generate,extract,andannotatelargescientificdatasets

Despitepopularnarrativesaboutaneraofdataabundance,thereisachroniclackofscientificdataonmostofthenaturalandsocialworld,fromthesoil,deepoceanandatmosphere,totheinformaleconomy.AIcouldhelpindifferentways.Itcouldmakeexistingdatacollectionmoreaccurate,forexampleby

reducingthenoiseanderrorsthatcanoccurwhen

sequencingDNA

,

detectingcelltypesinasample,

or

capturinganimalsounds

.ScientistscanalsoexploitLLMs’growingabilitytooperateacrossimages,videoandaudio,toextracttheunstructuredscientificdatathatisburiedinscientificpublications,

archives,andlessobviousresourcessuchasinstructionalvideos,andconvertitintostructureddatasets.

AIcanalsohelptoannotatescientificdatawiththesupportinginformationthatscientistsneedinordertouseit.Forexample,atleastone-thirdofmicrobialproteins

arenotreliablyannotated

withdetailsaboutthefunction(s)thattheyarethoughttoperform.In2022,ourresearchers

usedAIto

predictthefunctionofproteins

,leadingtonewentriesinthe

UniProt

,

Pfam

and

InterPro

databases.

GoogleDeepMind8

Introduction

PartA:Theopportunities

PartB:Theingredients

PartC:Therisks

PartD:Thepolicyresponse

AImodels,oncevalidated,canalsoserveasnewsourcesofsyntheticscientificdata.Forexample,our

AlphaProteo

proteindesignmodelistrainedonmorethan100millionAI-generatedprotein

structuresfromAlphaFold2,alongwithexperimentalstructuresfromthe

ProteinDataBank

.TheseAIopportunitiescancomplementandincreasethereturnonothermuch-neededeffortstogeneratescientificdata,suchas

digitisingarchives

,orfundingnewdatacapturetechnologiesandmethods,likeeffortsunderwayinsinglecellgenomicstocreatepowerfuldatasetsofindividualcellsin

unprecedenteddetail.

3.Experiments

Simulate,accelerateandinformcomplexexperiments

Manyscientificexperimentsareexpensive,complex,andslow.Somedonothappenatallbecauseresearcherscannotaccessthefacilities,participantsorinputsthattheyneed.Fusionisacase

inpoint.Itpromisesanenergysourcethatispracticallylimitless,emission-freeandcouldenable

thescalingofenergy-intensiveinnovations,likedesalination.Torealisefusion,scientistsneedto

createandcontrolplasma-afourthfundamentalstateofmatter.However,thefacilitiesneededarehugelycomplextobuild.

ITER

’sprototypetokamakreactorbeganconstructionin2013,butplasmaexperimentsare

notsettobegin

untilthemid-2030sattheearliest,althoughothershopetobuildsmallerreactorsonshortertimelines.

AIcouldhelptosimulatefusionexperimentsandenablemuchmoreefficientuseofsubsequentexperimenttime.Oneapproachistorunreinforcementlearningagentsonsimulationsofphysicalsystems.Between2019and2021,ourresearcherspartneredwiththeSwissFederalInstituteof

TechnologyLausanneto

demonstrate

howtouseRLtocontroltheshapeofplasmainasimulationofatokamakreactor.Theseapproachescouldbeextendedtootherexperimentalfacilities,suchas

particleaccelerators

,

telescopearrays

,or

gravitationalwavedetectors

.

UsingAItosimulateexperimentswilllookverydifferentacrossdisciplines,butacommonthreadis

thatthesimulationswillofteninformandguidephysicalexperiments,ratherthansubstituteforthem.Forexample,theaverageperson

hasmorethan9,000

missensevariants,orsinglelettersubstitutionsintheirDNA.Mostofthesegeneticvariantsarebenignbutsomecandisruptthefunctionsthat

proteinsperform,contributingtoraregeneticdiseaseslikecysticfibrosisaswellascommondiseaseslikecancer.Physicalexperimentstotesttheeffectsofthesevariantsareoftenlimitedtoasingle

protein.Our

AlphaMissensemodel

classifies89%ofthe71millionpotentialhumanmissensevariants

aslikelyharmfulorbenign,enablingscientiststofocustheirphysicalexperimentsonthemostlikelycontributorstodisease.

GoogleDeepMind9

Introduction

PartA:Theopportunities

PartB:Theingredients

PartC:Therisks

PartD:Thepolicyresponse

Allpossible71millionhumanmissensevariants

AlphaMissensepredictions:

Likelybenign57%

Likelypathogenic

32%

.Uncertain

11%

Humanannotations:

Seeninhumans~6%

Confirmedbyhumanexperts~0.1%

AlphaMissensepredictedthepathogenicityofallpossible71millionmissensevariants.Itclassified89%

-predicting57%werelikelybenignand32%werelikelypathogenic.

4.Models

Modelcomplexsystemsandhowtheircomponentsinteract

Ina

1960paper,

theNobelPrizewinningphysicistEugeneWignermarvelledatthe“unreasonable

effectiveness”ofmathematicalequationsformodellingimportantnaturalphenomena,suchas

planetarymotion.However,overthepasthalfcentury,modelsthatrelyonsetsofequationsor

otherdeterministicassumptionshavestruggledtocapture

thefullcomplexityofsystemsinbiology,

economics,weather,andelsewhere

.Thisreflectsthesheernumberofinteractingpartsthatmakeupthesesystems,aswellastheirdynamismandpotentialforemergent,randomorchaoticbehaviour.Thechallengesinmodellingthesesystemsimpedesscientists’abilitytopredictorcontrolhowtheywillbehave,includingduringshocksorinterventions,suchasrisingtemperatures,anewdrug,ortheintroductionofataxchange.

GoogleDeepMind10

Introduction

PartA:Theopportunities

PartB:Theingredients

PartC:Therisks

PartD:Thepolicyresponse

AIcouldmoreaccuratelymodelthesecomplexsystemsbyingestingmoredataaboutthem,andlearningmorepowerfulpatternsandregularitieswithinthisdata.Forexample,modernweather

forecastingisatriumphofscienceandengineering.Forgovernmentsandindustry,itinforms

everythingfromrenewableenergyplanningtopreparingfor

hurricanes

and

floods

.Forthepublic,

theweatheristhemostpopularnon-brandedqueryonGoogleSearch.Traditional

numeralprediction

methods

arebasedoncarefully-definedphysicsequationsthatprovideaveryuseful,yetimperfect,approximationoftheatmosphere’scomplexdynamics.Theyarealsocomputationallyexpensiveto

run.In2023,wereleaseda

deeplearningsystem

thatpredictsweatherconditionsupto10daysinadvance,whichoutperformedtraditionalmodelsonaccuracyandpredictionspeed.Asweexpandonbelow,usingAItoforecastweathervariablescouldalsohelptomitigateandrespondtoclimatechange.Forinstance,whenpilotsflythroughhumidregionsitcancausecondensationtrailsthat

contributeto

aviation’sglobalwarmingimpact.Googlescientists

recentlyused

AItopredictwhenandwherehumidregionsmayarisetohelppilotsavoidflyingthroughthem.

Inmanycases,AIwillenrichtraditionalapproachestomodellingcomplexsystemsratherthanreplacethem.Forexample,agent-basedmodellingsimulatesinteractionsbetweenindividualactors,like

firmsandconsumers,tounderstandhowtheseinteractionsmightaffectalargermorecomplex

systemliketheeconomy.Traditionalapproachesrequirescientiststospecifybeforehandhowthesecomputationalagentsshouldbehave.Ourresearchteams

recentlyoutlined

howscientistscoulduseLLMstocreatemoreflexiblegenerativeagentsthatcommunicateandtakeactions,suchassearchingforinformationormakingpurchases,whilealsoreasoningaboutandrememberingtheseactions.

Scientistscouldalsousereinforcementlearningtostudyhowtheseagentslearnandadapttheirbehaviourin

moredynamicsimulations

,forexampleinresponsetotheintroductionofnewenergypricesorpandemicresponsepolicies.

5.Solutions

Identifynovelsolutionstoproblemswithlargesearchspaces

Manyimportantscientificproblemscomewithapracticallyincomprehensiblenumberofpotential

solutions.Forexample,biologistsandchemistsaimtodeterminethestructure,characteristics,andfunction(s)ofmoleculessuchasproteins.Onegoalofsuchworkistohelpdesignnovelversionsofthesemoleculestoserveasantibodydrugs,plastic-degradingenzymesornewmaterials.However,todesignasmallmoleculedrug,scientistsface

morethan10

60

potentialoptions.Todesignaproteinwith400standardaminoacids,theyface20400options.Theselargesearchspacesarenotlimitedtomoleculesbutarecommonplaceformanyscientificproblems,suchasfindingthebestprooffora

mathsproblem,themostefficientalgorithmforacomputersciencetask,orthe

bestarchitecturefor

acomputerchip

.

GoogleDeepMind11

Traditionally,scientistsrelyonsomecombinationofintuition,trialanderror,iteration,orbruteforce

computingtofindthebestmolecule,proof,oralgorithm.However,thesemethodsstruggletoexploitthehugespaceofpotentialsolutions,leavingbetteronesundiscovered.AIcan

openupnewpartsof

thesesearchspaces

whilealsohominginmorequicklyonthesolutionsthataremostlikelytobeviableanduseful-adelicatebalancingact.Forexample,inJuly,our

AlphaProofandAlphaGeometry2

systemscorrectlysolvedfouroutofsixproblemsfromthe

InternationalMathematicalOlympiad

,

anelitehighschoolcompetition.ThesystemsmakeuseofourGeminiLLMarchitecturetogeneratealargenumberofnovelideasandpotentialsolutionsforagivenmathsproblem,andcombinethiswithsystemsgroundedinmathematicallogicthatcaniterativelyworktowardsthecandidatesolutionsthataremostlikelytobecorrect.

AIscientistsorAI-empoweredscientists?

ThisgrowinguseofAIinscience,andtheemergenceofearlyAIscientificassistants,raisesquestionsabouthowfastandhowfarthecapabilitiesofAImayadvanceandwhatthiswillmeanforhuman

scientists.CurrentLLM-basedAIscientificassistantsmakearelativelysmallcontributiontoa

relativelynarrowrangeoftasks,suchassupportingliteraturereviews.Thereareplausiblenear-termscenariosinwhichtheybecomebetteratthesetasksandbecomecapableofmoreimpactfulones,suchashelpingtogeneratepowerfulhypotheses,orhelpingtopredicttheoutcomesofexperiments.

However,currentsystemsstillstrugglewiththedeepercreativityand

reasoning

thathumanscientistsrelyonforsuchtasks.

EffortsareunderwaytoimprovetheseAIcapabilities

,forexamplebycombiningLLMswithlogicaldeductionengines,asinour

AlphaProofandAlphaGeometry2

examples,butfurtherbreakthroughsareneeded.Theabilitytoaccelerateorautomateexperimentswillalsobeharderforthosethatrequirecomplicatedactionsinwetlabs,interactingwithhumanparticipants,orlengthy

processes,suchasmonitoringdiseaseprogression.Althoughagain,workisunderwayinsomeoftheseareas,suchasnewtypesoflaboratoryroboticsand

automatedlabs

.

EvenasAIsystems’capabilitiesimprove,thegreatestmarginalbenefitwillcomefromdeploying

theminusecasesthatplaytotheirrelativestrengths-suchastheabilitytorapidlyextractinformationfromhugedatasets-andwhichhelpaddressgenuinebottleneckstoscientificprogresssuchasthefiveopportunitiesoutlinedabove,ratherthanautomatingtasksthathumanscientistsalreadydowell.AsAIenablescheaperandmorepowerfulscience,demandforscienceandscientistswillalsogrow.

Forexample,recentbreakthroughshavealreadyledtoaslewofnewstartupsinareaslike

protein

design

,

materialscience

and

weatherforecasting

.Unlikeothersectors,anddespite

pastclaimstothe

contrary,

futuredemandforscienceappearspracticallylimitless.Newadvances

havealwaysopened

upnew,unpredictableregions

inthescientificmapofknowledge,andAIwilldosimilar.As

envisioned

byHerbertSimon,AIsystemswillalsobecomeobjectsofscienceresearch,withscientistssettoplayaleadingroleinevaluatingandexplainingtheirscientificcapabilities,aswellasindevelopingnew

typesofhuman-AIscientificsystems.

GoogleDeepMind12

PartB

The

ingredients

13

Introduction

PartA:Theopportunities

PartB:Theingredients

PartC:Therisks

PartD:Thepolicyresponse

Theingredients

WeareinterestedintheingredientsthatambitiousAIforScienceeffortsneedtosucceed-bothat

theindividualresearcheffortlevelandatthelevelofthescienceecosystem,wherepolicymakershavemorescopetoshapethem.Theexpertsthatweinterviewedroutinelycitedseveralingredientsthat

weorganisedintoatoymodel,whichwecalltheAIforScienceproductionfunction.Thisproductionfunctionisnotmeanttobeexhaustive,prescriptive,oraneatlinearprocess.Theingredientswillbeintuitivetomany,butourinterviewsrevealedanumberoflessonsaboutwhattheylooklikeinpracticewhichwesharebelow.

TheAIforscienceproductionfunction

Startingpoint

InfrastructureDoingtheresearch

Drivingimpact

Adoption

Partnerships

Safety&responsibility

Organisationaldesign

Problemselection

Interdisciplinarity

Evaluations

Compute

Data

GoogleDeepMind14

Introduction

PartA:Theopportunities

PartB:Theingredients

PartC:Therisks

PartD:Thepolicyresponse

1.Problemselection

Pursueambitious,AI-shapedproblems

Scientificprogressrestsonbeingabletoidentifyanimportantproblemandasktherightquestion

abouthowtosolveit.In

theirexploration

intothegenesisofscientificbreakthroughs,Venkatesh

NarayanamurtiandJeffreyY.Tsaodocumenthowimportantthereciprocalandrecursiverelationshipbetweenquestionsandanswersis,includingtheimportanceofaskingambitiousnewquestions.

OurScienceteamstartsbythinkingaboutwhetherapotentialresearchproblemissignificantenoughtojustifyasubstantialinvestmentoftimeandresources.OurCEODemisHassabishasamentalmodeltoguidethisassessment:thinkingaboutallofscienceasatreeofknowledge.Weareparticularly

interestedintheroots-fundamental‘rootnodeproblems’like

proteinstructureprediction

or

quantumchemistry

that,ifsolved,couldunlockentirelynewbranchesofresearchandapplications.

ToassesswhetherAIwillbesuitableandadditive,welookforproblemswithcertaincharacteristics,

suchashugecombinatorialsearchspaces,largeamountsofdata,andaclearobjectivefunctionto

benchmarkperformanceagainst.OftenaproblemissuitableforAIinprinciple,buttheinputsaren’t

yetinplaceanditneedstobestoredforlater.Oneoftheoriginal

inspirations

forAlphaFoldwas

conversationsthatDemishadmanyyearspriorasastudentwithafriendwhowasobsessedwith

theproteinfoldingproblem.Manyrecentbreakthroughsalsofeaturethiscomingtogetherofan

importantscientificproblemandanAIapproachthathasreachedapointofmaturity.Forexample,

our

fusion

effortwasaidedbyanovel

reinforcementlearningalgorithm

calledmaximumaposteriori

policyoptimization,whichhadonlyjustbeenreleas

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论