版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届贵州省从江县民族中学数学高二上期末达标检测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.若a>b,c>d,则下列不等式中一定正确的是()A. B.C. D.2.袋子中有四个小球,分别写有“文、明、中、国”四个字,有放回地从中任取一个小球,直到“中”“国”两个字都取到就停止,用随机模拟的方法估计恰好在第三次停止的概率.利用电脑随机产生0到3之间取整数值的随机数,分别用0,1,2,3代表“文、明、中、国”这四个字,以每三个随机数为一组,表示取球三次的结果,经随机模拟产生了以下18组随机数:由此可以估计,恰好第三次就停止的概率为()A. B.C. D.3.《九章算术》第三章“衰分”介绍比例分配问题:“衰分”是按比例递减分配的意思,通常称递减的比例(即百分比)为“衰分比”.如:甲、乙、丙、丁分别分得,,,,递减的比例为,那么“衰分比”就等于,今共有粮石,按甲、乙、丙、丁的顺序进行“衰分”,已知乙分得石,甲、丙所得之和为石,则“衰分比”为()A. B.C. D.4.已知函数,则曲线在点处的切线方程为()A. B.C. D.5.已知等差数列的前项和为,,,则()A. B.C. D.6.已知、是椭圆和双曲线的公共焦点,是它们的一个公共点,且,椭圆的离心率为,双曲线的离心率为,则()A.2 B.3C.4 D.57.某产品的广告费用x与销售额y的统计数据如下表:广告费用(万元)4235销售额(万元)49263954根据上表可得回归方程中的为9.4,据此模型预报广告费用为6万元时销售额为A.63.6万元 B.65.5万元C.67.7万元 D.72.0万元8.已知抛物线的焦点为,过点的直线交抛物线于,两点,则的取值范围是()A. B.C. D.9.已知圆,为圆外的任意一点,过点引圆的两条切线、,使得,其中、为切点.在点运动的过程中,线段所扫过图形的面积为()A. B.C. D.10.一质点从出发,做匀速直线运动,每秒的速度为秒后质点所处的位置为()A. B.C. D.11.下列命题中正确的是A.命题“若,则”的否命题为:“若,则”B.若命题,是假命题,则实数C.“”的一个充分不必要条件是“”D.命题“若,则”的逆否命题为真命题12.双曲线与椭圆的焦点相同,则等于()A.1 B.C.1或 D.2二、填空题:本题共4小题,每小题5分,共20分。13.若椭圆的焦点在轴上,且长轴长是短轴长的2倍,则______.14.已知向量,若,则实数___________.15.已知拋物线的焦点为F,O为坐标原点,M的准线为l且与x轴相交于点B,A为M上的一点,直线AO与直线l相交于C点,若,,则M的标准方程为______________.16.攒尖是古代中国建筑中屋顶的一种结构形式,依其平面有圆形攒尖、三角攒尖、四角攒尖、八角攒尖.如图属重檐四角攒尖,它的上层轮廓可近似看作一个正四棱锥,若此正四棱锥的侧面积是底面积的2倍,则侧面与底面的夹角为___________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知数列的首项为,且满足.(1)求证:数列为等比数列;(2)设,记数列的前项和为,求,并证明:.18.(12分)若数列的前n项和满足,(1)求的通项公式;(2)设,求数列的前n项和19.(12分)如图1是直角梯形,以为折痕将折起,使点C到达的位置,且平面与平面垂直,如图2(1)求异面直线与所成角的余弦值;(2)在棱上是否存在点P,使平面与平面的夹角为?若存在,则求三棱锥的体积,若不存在,则说明理由20.(12分)如图,直四棱柱中,底面是边长为的正方形,点在棱上.(1)求证:;(2)从条件①、条件②、条件③这三个条件中选择两个作已知,使得平面,并给出证明.条件①:为的中点;条件②:平面;条件③:.(3)在(2)的条件下,求平面与平面夹角的余弦值.21.(12分)已知椭圆:的离心率为,,分别为椭圆的左,右焦点,为椭圆上一点,的周长为.(1)求椭圆的方程;(2)为圆上任意一点,过作椭圆的两条切线,切点分别为A,B,判断是否为定值?若是,求出定值:若不是,说明理由,22.(10分)如图,菱形的边长为4,,矩形的面积为8,且平面平面(1)证明:;(2)求C到平面的距离.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】根据不等式的性质及反例判断各个选项.【详解】因为c>d,所以,所以,所以B正确;时,不满足选项A;时,,且,所以不满足选项CD;故选:B2、A【解析】利用古典概型的概率公式求解.【详解】因为随机模拟产生了以下18组随机数:,其中恰好第三次就停止包含的基本事件有:023,123,132共3个,所以由此可以估计,恰好第三次就停止的概率为,故选:A3、A【解析】根据题意,设衰分比为,甲分到石,,然后可得和,解出、的值即可【详解】根据题意,设衰分比为,甲分到石,,又由今共有粮食石,按甲、乙、丙、丁的顺序进行“衰分”,已知乙分得90石,甲、丙所得之和为164石,则,,解得:,,故选:A4、A【解析】求出函数的导函数,再求出,然后利用导数的几何意义求解作答.【详解】函数,求导得:,则,而,于是得:,即,所以曲线在点处的切线方程为.故选:A5、C【解析】利用已知条件求得,由此求得.【详解】依题意,解得,所以.故选:C【点睛】本小题主要考查等差数列的通项公式和前项和公式,属于基础题.6、C【解析】依据椭圆和双曲线定义和题给条件列方程组,得到关于椭圆的离心率和双曲线的离心率的关系式,即可求得的值.【详解】设椭圆的长轴长为,双曲线的实轴长为,令,不妨设则,解之得代入,可得整理得,即,也就是故选:C7、B【解析】,∵数据的样本中心点在线性回归直线上,回归方程中的为9.4,∴42=9.4×3.5+a,∴=9.1,∴线性回归方程是y=9.4x+9.1,∴广告费用为6万元时销售额为9.4×6+9.1=65.5考点:线性回归方程8、B【解析】当直线斜率存在时,设直线方程,联立方程组,结合根与系数关系可得,进而求得取值范围,当斜率不存在是,可得,两点坐标,进而可得的值.【详解】当直线斜率存在时,设直线方程为,,,联立方程,得,恒成立,则,,,,,所以,当直线斜率不存在时,直线方程为,所以,,,综上所述:,故选:B.9、D【解析】连接、、,分析可知四边形为正方形,求出点的轨迹方程,分析可知线段所扫过图形为是夹在圆和圆的圆环,利用圆的面积公式可求得结果.【详解】连接、、,由圆的几何性质可知,,又因为且,故四边形为正方形,圆心,半径为,则,故点的轨迹方程为,所以,线段扫过的图形是夹在圆和圆的圆环,故在点运动的过程中,线段所扫过图形的面积为.故选:D.10、A【解析】利用空间向量的线性运算即可求解.【详解】2秒后质点所处的位置为.故选:A【点睛】本题考查了空间向量的线性运算,考查了基本知识掌握的情况以及学生的综合素养,属于基础题.11、C【解析】.命题的否定是同时否定条件和结论;.将当成真命题解出的范围,再取补集即可;.求出“”的充要条件再判断即可;.判断原命题的真假即可【详解】解:对于A:命题“若,则”的否命题为:“若,则“,故A错误;对于B:当命题,是真命题时,,所以,又因为命题为假命题,所以,故B错误;对于C:由“”解得:,故“”是“”的充分不必要条件,故C正确;对于D:因为命题“若,则”是假命题,所以其逆否命题也是假命题,故D错误;故选:C12、A【解析】根据双曲线方程形式确定焦点位置,再根据半焦距关系列式求参数.【详解】因为双曲线的焦点在轴上,所以椭圆焦点在轴上,依题意得解得.故选:A二、填空题:本题共4小题,每小题5分,共20分。13、4【解析】根据椭圆焦点在轴上方程的特征进行求解即可.【详解】因为椭圆的焦点在轴上,所以有,因为长轴长是短轴长的2倍,所以有,故答案为:414、2【解析】利用向量平行的条件直接解出.【详解】因为向量,且,所以,解得:2故答案为:215、【解析】先利用相似关系计算,求得直线OA的方程,再联立方程求得,利用抛物线定义根据即得p值,即得结果.【详解】因为,,所以,则,如图,,故,解得,所以,直线OA的斜率为,OA的方程,联立直线OA与抛物线方程,解得,所以,故,则抛物线标准方程为.故答案为:.16、【解析】设此四棱锥P-ABCD底面边长为,斜高为,连结AC、BD交于点O,连结OP.则以O为原点,为x、y、z轴正半轴建立空间直角坐标系,用向量法求出侧面与底面夹角.【详解】设此四棱锥P-ABCD底面边长为,斜高为,连结AC、BD交于点O,连结OP.则,,以O为原点,为x、y、z轴正半轴建立空间直角坐标系则,,设平面的法向量为,则,令,则,显然平面的法向量为所以,所以侧面与底面的夹角为故答案为:.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)证明见解析(2),证明见解析【解析】(1)根据等比数列的定义证明;(2)由错位相减法求得和,再由的单调性可证得不等式成立【小问1详解】由得又,数列是以为首项,以为公比的等比数列.【小问2详解】由(1)的结论有①②①②得:又为递增数列,18、(1)(2)【解析】(1)根据递推关系结合等比数列的定义可求解;(2)根据(1)化简,利用裂项相消法求出数列的前n项和.小问1详解】当时,,所以,即,当时,,得,则所以数列是首项为﹣1,公比为3的等比数列所以【小问2详解】由(1)得:所以,所以19、(1)(2)存在,靠近点D的三等分点.【解析】(1)由题意建立空间直接坐标系,求得的坐标,由求解;(2)假设棱上存在点P,设,求得点p坐标,再求得平面PBE的一个法向量,由平面,得到为平面的一个法向量,然后由求解.【小问1详解】解:因为,所以四边形ABCE是平行四边形,又,所以四边形ABCE是菱形,,又平面与平面垂直,又平面与平面=EB,所以平面,建立如图所示空间直接坐标系:则,所以,则,所以异面直线与所成角的余弦值是;【小问2详解】假设棱上存在点P,使平面与平面的夹角为,设,则,又,设平面PBE的一个法向量为,则,即,则,由平面,则为平面的一个法向量,所以,解得.20、(1)证明见解析;(2)答案见解析;(3).【解析】(1)连结,,由直四棱柱的性质及线面垂直的性质可得,再由正方形的性质及线面垂直的判定、性质即可证结论.(2)选条件①③,设,连结,,由中位线的性质、线面垂直的性质可得、,再由线面垂直的判定证明结论;选条件②③,设,连结,由线面平行的性质及平行推论可得,由线面垂直的性质有,再由线面垂直的判定证明结论;(3)构建空间直角坐标系,求平面、平面的法向量,应用空间向量夹角的坐标表示求平面与平面夹角的余弦值.【小问1详解】连结,,由直四棱柱知:平面,又平面,所以,又为正方形,即,又,∴平面,又平面,∴.【小问2详解】选条件①③,可使平面.证明如下:设,连结,,又,分别是,的中点,∴.又,所以.由(1)知:平面,平面,则.又,即平面.选条件②③,可使平面.证明如下:设,连结.因为平面,平面,平面平面,所以,又,则.由(1)知:平面,平面,则.又,即平面.【小问3详解】由(2)可知,四边形为正方形,所以.因为,,两两垂直,如图,以为原点,建立空间直角坐标系,则,,,,,,所以,.由(1)知:平面的一个法向量为.设平面的法向量为,则,令,则.设平面与平面的夹角为,则,所以平面与平面夹角的余弦值为.21、(1)(2)是;【解析】(1)由离心率和焦点三角形周长可求出,结合关系式得出,即可得出椭圆的方程;(2)由平行于轴特殊情况求出,即;当平行于轴时,设过的直线为,联立椭圆方程,令化简得关于的二次方程,由韦达定理即可求解.【小问1详解】由题可知,,解得,又,解得,故椭圆的标准方程为:;【小问2详解】如图所示,当平行于轴时,恰好平行于轴,,,;当不平行于轴时,设,设过点的直线为,联立得
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 员工上班无证驾驶免责协议书(2篇)
- 二零二四年度战略合作协议:商务会议专用
- 二零二四年度在线教育平台建设与运营合同
- 二零二四年度蔬菜订购与价格锁定合同
- 组拼式大模板施工技术总结
- 冷水购销协议
- 演出节目道具制作合同
- 专项服务提供商协议
- 房屋买卖合同效力认定问题分析与启示
- 家庭护理厨师雇佣合同
- 第5章 对函数的再探索 综合检测
- 专题05-因式分解(历年真题)-2019-2020学年上海七年级数学上册期末专题复习(学生版)
- 安全生产管理制度-普货运输
- 广西壮族自治区房屋建筑和市政工程监理招标文件范本(2020年版)
- 河北省石家庄市第四十中学2024-2025学年七年级上学期期中语文试题
- 2024-2030年中国地热能市场经济效益及发展前景展望研究报告
- 公务用车车辆安全培训课件
- 人工智能导论-2022年学习通超星期末考试答案章节答案2024年
- 单元教学设计17 大单元背景下的教材内容重构设计思路及具体课时实施-高中数学单元教学设计
- 2024CSCO胃癌诊疗指南解读
- 2024秋期国家开放大学本科《合同法》一平台在线形考(任务1至4)试题及答案
评论
0/150
提交评论