版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
广东省东华高级中学2025届高一上数学期末考试试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知,则()A. B.C. D.2.已知,,,是球的球面上的四个点,平面,,,则该球的半径为()A. B.C. D.3.已知函数,则的零点所在区间为A. B.C. D.4.从含有两件正品和一件次品的3件产品中每次任取1件,每次取出后放回,连续取两次,则取出的两件产品中恰有一件是次品的概率为()A. B.C. D.5.集合,,将集合A,B分别用如图中的两个圆表示,则圆中阴影部分表示的集合中元素个数恰好为2的是()A. B.C. D.6.若,分别是方程,的解,则关于的方程的解的个数是()A B.C. D.7.若函数的定义域为R,则下列函数必为奇函数的是()A. B.C. D.8.设,,,则,,的大小关系为()A. B.C. D.9.若函数恰有个零点,则的取值范围是()A. B.C. D.10.一个三棱锥的正视图和俯视图如图所示,则该三棱锥的侧视图可能为A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知函数,若函数的最小值与函数的最小值相等,则实数的取值范围是__________12.已知函数,,则函数的最大值为______.13.实数271314.在平面直角坐标系中,动点P到两条直线与的距离之和等于2,则点P到坐标原点的距离的最小值为_________.15.已知函数,,若对任意的,都存在,使得,则实数的取值范围为_________.16.函数的图像恒过定点的坐标为_________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数为奇函数,且(1)求函数的解析式;(2)判断函数在的单调性并证明;(3)解关于的x不等式:18.已知为奇函数,且(1)求的值;(2)判断在上的单调性,并用单调性定义证明19.如图所示,某市政府决定在以政府大楼O为中心,正北方向和正东方向的马路为边界的扇形地域内建造一个图书馆.为了充分利用这块土地,并考虑与周边环境协调,设计要求该图书馆底面矩形的四个顶点都要在边界上,图书馆的正面要朝市政府大楼.设扇形的半径OM=R,∠MOP=45°,OB与OM之间的夹角为θ.(1)将图书馆底面矩形ABCD的面积S表示成θ的函数.(2)若R=45m,求当θ为何值时,矩形ABCD的面积S最大?最大面积是多少?(取=1.414)20.已知角的顶点为坐标原点,始边为轴的非负半轴,终边经过点,且.(1)求实数的值;(2)若,求的值.21.已知,,函数.(1)当时,求不等式的解集;(2)若,求的最小值,并求此时a,b的值.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】利用诱导公式,化简条件及结论,再利用二倍角公式,即可求得结论【详解】解:∵sin,∴sin,∵sinsincos(2α)=1﹣2sin21故选B【点睛】本题考查三角函数的化简,考查诱导公式、二倍角公式的运用,属于基础题2、D【解析】由题意,补全图形,得到一个长方体,则PD即为球O的直径,根据条件,求出PD,即可得答案.【详解】依题意,补全图形,得到一个长方体,则三棱锥P-ABC的外接球即为此长方体的外接球,如图所示:所以PD即为球O的直径,因为平面,,,所以AD=BC=3,所以,所以半径,故选:D【点睛】本题考查三棱锥外接球问题,对于有两两垂直的三条棱的三棱锥,可将其补形为长方体,即长方体的体对角线为外接球的直径,可简化计算,方便理解,属基础题.3、B【解析】根据函数的零点判定定理可求【详解】连续函数在上单调递增,,,的零点所在的区间为,故选B【点睛】本题主要考查了函数零点存在定理的应用,熟记定理是关键,属于基础试题4、B【解析】根据独立重复试验的概率计算公式,准确计算,即可求解.【详解】由题意,该抽样是有放回的抽样,所以每次抽到正品的概率是,抽到次品的概率是,所以取出的两件产品中恰有一件是次品的概率为.故选:B.5、B【解析】首先求出集合,再结合韦恩图及交集、并集、补集的定义计算可得;【详解】解:∵,,∴,则,,选项A中阴影部分表示的集合为,即,故A错误;选项B中阴影部分表示的集合由属于A但不属于B的元素构成,即,故B正确;选项C中阴影部分表示的集合由属于B但不属于A的元素构成,即,有1个元素,故C错误;选项D中阴影部分表示的集合由属于但不属于的元素构成,即,故D错误故选:B6、B【解析】∵,分别是方程,的解,∴,,∴,,作函数与的图象如下:结合图象可以知道,有且仅有一个交点,故,即分类讨论:()当时,方程可化为,计算得出,()当时,方程可化,计算得出,;故关于的方程的解的个数是,本题选择B选项.点睛:(1)求分段函数的函数值,要先确定要求值的自变量属于哪一段区间,然后代入该段的解析式求值,当出现f(f(a))的形式时,应从内到外依次求值(2)当给出函数值求自变量的值时,先假设所求的值在分段函数定义区间的各段上,然后求出相应自变量的值,切记要代入检验,看所求的自变量的值是否满足相应段自变量的取值范围7、C【解析】根据奇偶性的定义判断可得答案.【详解】,由得是偶函数,故A错误;,由得是偶函数,故B错误;,由得是奇函数,故C正确;,由得是偶函数,故D错误;故选:C.8、D【解析】根据指数函数和对数函数的单调性,再结合0,1两个中间量即可求得答案.【详解】因为,,,所以.故选:D.9、D【解析】由分段函数可知必须每段有且只有1个零点,写出零点建立不等式组即可求解.【详解】因为时至多有一个零点,单调函数至多一个零点,而函数恰有个零点,所以需满足有1个零点,有1个零点,所以,解得,故选:D10、D【解析】由几何体的正视图和俯视图可知,三棱锥的顶点在底面内的射影在底面棱上,则原几何体如图所示,从而侧视图为D.故选D二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】由二次函数的知识得,当时有.令,则,.结合二次函数可得要满足题意,只需,解不等式可得所求范围【详解】由已知可得,所以当时,取得最小值,且令,则,要使函数的最小值与函数的最小值相等,只需满足,解得或.所以实数的取值范围是故答案为【点睛】本题考查二次函数最值的问题,求解此类问题时要结合二次函数图象,即抛物线的开口方向和对称轴与区间的关系进行求解,同时注意数形结合在解题中的应用,考查分析问题和解决问题的能力,属于基础题12、##【解析】根据分段函数的定义,化简后分别求每段上函数的最值,比较即可得出函数最大值.【详解】当时,即或,解得或,此时,当时,即时,,综上,当时,,故答案为:13、1【解析】直接根据指数幂运算与对数运算求解即可.【详解】解:27故答案为:114、【解析】∵3x﹣y=0与x+3y=0的互相垂直,且交点为原点,∴设点P到两条直线的距离分别为a,b,则a≥0,b≥0,则a+b=2,即b=2﹣a≥0,得0≤a≤2,由勾股定理可知===,∵0≤a≤2,∴当a=1时,的距离,故答案为15、##a≤【解析】时,,原问题.【详解】∵,,∴,∴,即对任意的,都存在,使恒成立,∴有.当时,显然不等式恒成立;当时,,解得;当时,,此时不成立.综上,.故答案为:.16、(1,2)【解析】令真数,求出的值和此时的值即可得到定点坐标【详解】令得:,此时,所以函数的图象恒过定点,故答案为:三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)在上单调递增,证明见解析;(3).【解析】(1)由奇函数的定义有,可求得的值,又由,可得的值,从而即可得函数的解析式;(2)任取,,且,由函数单调性的定义即可证明函数在上单调递增;(3)由(2)知在上单调递增,因为为奇函数,所以在上也单调递增,又,从而利用单调性即可求解.【小问1详解】解:因为函数为奇函数,定义域为,所以,即,所以,又,所以,所以;【小问2详解】解:在上单调递增,证明如下:任取,,且,则,又,,且,所以,,,所以,即,所以在上单调递增;【小问3详解】解:由(2)知在上单调递增,因为为奇函数,所以在上也单调递增,令,解得或因为,且,所以,所以,解得,又,所以原不等式的解集为.18、(1);(2)递减,见解析【解析】(1)函数是奇函数,所以,得到,从而解得;(2)在区间上任取两个数,且,判断的符号,得到,由此证明函数的单调性.详解】(1)由题意知,则,解得;(2)函数在上单调递减,证明如下:在区间上任取两个数,且,因为,所以即,,所以即,函数在上单调递减.【点睛】本题考查由函数的奇偶性求参数,利用定义证明函数的单调性,属于基础题.19、(1)S=R2sin-R2,θ∈;(2)当θ=时,矩形ABCD面积S最大,最大面积为838.35m2.【解析】(1)设OM与BC的交点为F,用表示出,,,从而可得面积的表达式;(2)结合正弦函数的性质求得最大值【详解】解:(1)由题意,可知点M为PQ的中点,所以OM⊥AD.设OM与BC的交点为F,则BC=2Rsinθ,OF=Rcosθ,所以AB=OF-AD=Rcosθ-Rsinθ.所以S=AB·BC=2Rsinθ(Rcosθ-Rsinθ)=R2(2sinθcosθ-2sin2θ)=R2(sin2θ-1+cos2θ)=R2sin-R2,θ∈.(2)因为θ∈,所以2θ+∈,所以当2θ+,即θ=时,S有最大值.Smax=(-1)R2=(-1)×452=0.414×2025=838.35(m2).故当θ=时,矩形ABCD的面积S最大,最大面积为838.35m2.【点睛】关键点点睛:本题考查三角函数的应用,解题关键是利用表示出矩形的边长,从而得矩形面积.利用三角函数恒等变换公式化函数为一个角的一个三角函数形式,然后结合正弦函数性质求得最大值20、(1)或(2)【解析】(1)利用三角函
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 员工上班无证驾驶免责协议书(2篇)
- 二零二四年度战略合作协议:商务会议专用
- 二零二四年度在线教育平台建设与运营合同
- 二零二四年度蔬菜订购与价格锁定合同
- 组拼式大模板施工技术总结
- 冷水购销协议
- 演出节目道具制作合同
- 专项服务提供商协议
- 房屋买卖合同效力认定问题分析与启示
- 家庭护理厨师雇佣合同
- 第5章 对函数的再探索 综合检测
- 专题05-因式分解(历年真题)-2019-2020学年上海七年级数学上册期末专题复习(学生版)
- 安全生产管理制度-普货运输
- 广西壮族自治区房屋建筑和市政工程监理招标文件范本(2020年版)
- 河北省石家庄市第四十中学2024-2025学年七年级上学期期中语文试题
- 2024-2030年中国地热能市场经济效益及发展前景展望研究报告
- 公务用车车辆安全培训课件
- 人工智能导论-2022年学习通超星期末考试答案章节答案2024年
- 单元教学设计17 大单元背景下的教材内容重构设计思路及具体课时实施-高中数学单元教学设计
- 2024CSCO胃癌诊疗指南解读
- 2024秋期国家开放大学本科《合同法》一平台在线形考(任务1至4)试题及答案
评论
0/150
提交评论