河南省郑州市中原区第一中学2025届高一数学第一学期期末调研模拟试题含解析_第1页
河南省郑州市中原区第一中学2025届高一数学第一学期期末调研模拟试题含解析_第2页
河南省郑州市中原区第一中学2025届高一数学第一学期期末调研模拟试题含解析_第3页
河南省郑州市中原区第一中学2025届高一数学第一学期期末调研模拟试题含解析_第4页
河南省郑州市中原区第一中学2025届高一数学第一学期期末调研模拟试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

河南省郑州市中原区第一中学2025届高一数学第一学期期末调研模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.如图是一个几何体的三视图,则此几何体的直观图是.A. B.C. D.2.()A.1 B.0C.-1 D.3.已知向量,,那么()A.5 B.C.8 D.4.已知角x的终边上一点的坐标为(sin,cos),则角x的最小正值为()A. B.C. D.5.已知函数,记集合,,若,则的取值范围是()A.[0,4] B.(0,4)C.[0,4) D.(0,4]6.函数的零点所在的区间是()A. B.C. D.7.下列各组函数中,表示为同一个函数的是A.与 B.与C.与 D.与且8.下列各组函数与的图象相同的是()A. B.C. D.9.已知,,,夹角为,如图所示,若,,且D为BC中点,则的长度为A. B.C.7 D.810.某圆柱的高为2,底面周长为16,其三视图如图所示,圆柱表面上的点在正视图上的对应点为,圆柱表面上的点在左视图上的对应点为,则在此圆柱侧面上,从到的路径中,最短路径的长度为A. B.C. D.2二、填空题:本大题共6小题,每小题5分,共30分。11.函数关于直线对称,设,则________.12.若函数的图象过点,则函数的图象一定经过点________.13.若函数是幂函数,则函数(其中,)的图象过定点的坐标为__________14.给出下列命题“①设表示不超过的最大整数,则;②定义:若任意,总有,就称集合为的“闭集”,已知且为的“闭集”,则这样的集合共有7个;③已知函数为奇函数,在区间上有最大值5,那么在上有最小值.其中正确的命题序号是_________.15.已知幂函数的图象关于轴对称,且在上单调递减,则满足的的取值范围为________.16.经过点P(3,2),且在两坐标轴上的截距相等的直线方程为(写出一般式)___三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数当时,判断在上的单调性并用定义证明;若对任意,不等式恒成立,求实数m的取值范围18.如图,在四棱锥中,,,,且,分别为的中点.(1)求证:平面;(2)求证:平面;(3)若二面角的大小为,求四棱锥的体积.19.已知函数,.(1)对任意的,恒成立,求实数k的取值范围;(2)设,证明:有且只有一个零点,且.20.已知函数(1)若为偶函数,求;(2)若命题“,”为假命题,求实数的取值范围21.已知对数函数.(1)若函数,讨论函数的单调性;(2)对于(1)中的函数,若,不等式的解集非空,求实数的取值范围.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】由已知可得原几何体是一个圆锥和圆柱的组合体,上部分是一个圆锥,下部分是一个圆柱,而且圆锥和圆柱的底面积相等,故此几何体的直观图是:故选D2、A【解析】用诱导公式化简计算.【详解】因为,所以,所以原式.故选:A.【点睛】本题考查诱导公式,考查特殊角的三角函数值.属于基础题.3、B【解析】根据平面向量模的坐标运算公式,即可求出结果.【详解】因为向量,,所以.故选:B.4、B【解析】先根据角终边上点的坐标判断出角的终边所在象限,然后根据三角函数的定义即可求出角的最小正值【详解】因为,,所以角的终边在第四象限,根据三角函数的定义,可知,故角的最小正值为故选:B【点睛】本题主要考查利用角的终边上一点求角,意在考查学生对三角函数定义的理解以及终边相同的角的表示,属于基础题5、C【解析】对分成和两种情况进行分类讨论,结合求得的取值范围.【详解】当时,,此时,符合题意.当时,,由解得或,由得或,其中,,和都不是这个方程的根,要使,则需.综上所述,的取值范围是.故选:C6、B【解析】根据函数零点存在性定理判断即可【详解】,,,故零点所在区间为故选:B7、D【解析】A,B两选项定义域不同,C选项对应法则不同,D选项定义域和对应法则均相同,即可得选项.【详解】A.,,两个函数的定义域不同,不是同一函数,B.,,两个函数的定义域不同,不是同一函数,C.,两个的对应法则不相同,不是同一函数D.,,两个函数的定义域和对应法则相同是相同函数,故选D【点睛】此题是个基础题.本题考查函数的三要素:定义域、值域、对应关系,相同的函数必然具有相同的定义域、值域、对应关系.要使数与的同一函数,必须满足定义域和对应法则完全相同即可,注意分析各个选项中的个函数的定义域和对应法则是否相同,通常的先后顺序为先比较定义域是否相同,其次看对应关系或值域..8、B【解析】根据相等函数的定义即可得出结果.【详解】若函数与的图象相同则与表示同一个函数,则与的定义域和解析式相同.A:的定义域为R,的定义域为,故排除A;B:,与的定义域、解析式相同,故B正确;C:的定义域为R,的定义域为,故排除C;D:与的解析式不相同,故排除D.故选:B9、A【解析】AD为的中线,从而有,代入,根据长度进行数量积的运算便可得出的长度【详解】根据条件:;故选A【点睛】本题考查模长公式,向量加法、减法及数乘运算,向量数量积的运算及计算公式,根据公式计算是关键,是基础题.10、B【解析】首先根据题中所给的三视图,得到点M和点N在圆柱上所处的位置,将圆柱的侧面展开图平铺,点M、N在其四分之一的矩形的对角线的端点处,根据平面上两点间直线段最短,利用勾股定理,求得结果.【详解】根据圆柱的三视图以及其本身的特征,将圆柱的侧面展开图平铺,可以确定点M和点N分别在以圆柱的高为长方形的宽,圆柱底面圆周长的四分之一为长的长方形的对角线的端点处,所以所求的最短路径的长度为,故选B.点睛:该题考查的是有关几何体的表面上两点之间的最短距离的求解问题,在解题的过程中,需要明确两个点在几何体上所处的位置,再利用平面上两点间直线段最短,所以处理方法就是将面切开平铺,利用平面图形的相关特征求得结果.二、填空题:本大题共6小题,每小题5分,共30分。11、1【解析】根据正弦及余弦函数的对称性的性质可得的对称轴为函数g(x)=3cos(ωx+φ)+1的对称中心,即可求值.【详解】∵函数f(x)的图象关于x对称∵f(x)=3sin(ωx+φ)的对称轴为函数g(x)=3cos(ωx+φ)+1的对称中心故有则1故答案为1【点睛】本题考查了正弦及余弦函数的性质属于基础题12、【解析】函数的图象可以看作的图象先关于轴对称,再向右平移4个单位得到,先求出关于轴的对称点,再向右平移4个单位即得.【详解】由题得,函数的图象先关于轴对称,再向右平移个单位得函数,点关于轴的对称点为,向右平移4个单位是,所以函数图象一定经过点.故答案为:.【点睛】本题主要考查函数的平移变换和对称变换,考查了分析能力,属于基础题.13、(3,0)【解析】若函数是幂函数,则,则函数(其中,),令,计算得出:,,其图象过定点的坐标为14、①②【解析】对于①,如果,则,也就是,所以,进一步计算可以得到该和为,故①正确;对于②,我们把分成四组:,由题设可知不是“闭集”中的元素,其余三组元素中的每组元素必定在“闭集”中同时出现或同时不出现,故所求的“闭集”的个数为,故②正确;对于③,因为在上的最大值为,故在上的最大值为,所以在上的最小值为,在上的最小值为,故③错.综上,填①②点睛:(1)根据可以得到,因此,这样的共有,它们的和为,依据这个规律可以写出和并计算该和(2)根据闭集的要求,中每组元素都是同时出现在闭集中或者同时不出现在闭集中,故可以根据子集的个数公式来计算(3)注意把非奇非偶函数转化为奇函数或偶函数来讨论15、【解析】根据幂函数的单调性和奇偶性得到,代入不等式得到,根据函数的单调性解得答案.【详解】幂函数在上单调递减,故,解得.,故,,.当时,不关于轴对称,舍去;当时,关于轴对称,满足;当时,不关于轴对称,舍去;故,,函数在和上单调递减,故或或,解得或.故答案为:16、x+y-5=0或2x-3y=0【解析】当直线经过原点时,在两坐标轴上的截距相等,可得其方程为2x﹣3y=0;当直线不经过原点时,可得它的斜率为﹣1,由此设出直线方程并代入P的坐标,可求出其方程为x+y﹣5=0,最后加以综合即可得到答案【详解】当直线经过原点时,设方程为y=kx,∵直线经过点P(3,2),∴2=3k,解之得k,此时的直线方程为yx,即2x﹣3y=0;当直线不经过原点时,设方程为x+y+c=0,将点P(3,2)代入,得3+2+c=0,解之得c=﹣5,此时的直线方程为x+y﹣5=0综上所述,满足条件的直线方程为:2x﹣3y=0或x+y﹣5=0故答案为:x+y-5=0或2x-3y=0【点睛】本题给出直线经过定点且在两个轴上的截距相等,求直线的方程.着重考查了直线的基本量与基本形式等知识,属于基础题三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)见解析;(2)【解析】当时,在上单调递增,利用定义法能进行证明;令,由,得,利用分离参数思想得,恒成立,求出最值即能求出实数的取值范围【详解】当时,在上单调递增证明如下:在上任取,,∵,,∴,∴当时,在上单调递增∵令,由,得,∵不等式恒成立,即在内恒成立,即,∴,恒成立,又∵当时,,可得∴实数的取值范围是【点睛】本题考查函数的单调性及证明,考查实数的取值范围的求法,考查恒成立问题,正确分离参数是关键,也是常用的一种手段.通过分离参数可转化为或恒成立,即或即可,利用单调性求出或即得解,是中档题18、(1)见解析(2)见解析(3)【解析】(1)取的中点,根据题意易证四边形为平行四边形,所以,从而易证结论;(2)由,可得线面垂直;(3)由二面角的大小为,可得,求出底面直角梯形的面积,进而可得四棱锥的体积.试题解析:(1)取的中点,连接,∵为中点,∴,由已知,∴,∴四边形为平行四边形,∴.又平面,平面,∴平面.(2)连接,∵,∴,又,∴又,为中点,∴,∴,∵,∴平面.(3)取的中点,连接.∴,,∵,∴,又,为的中点,∴,故为二面角的平面角.∴,∵平面,∴,由已知,四边形为直角梯形,∴,∴.点睛:垂直、平行关系证明中应用转化与化归思想的常见类型.(1)证明线面、面面平行,需转化为证明线线平行.(2)证明线面垂直,需转化为证明线线垂直.(3)证明线线垂直,需转化为证明线面垂直.19、(1);(2)证明见解析.【解析】(1)利用的单调性以及对数函数的单调性,即可求出的范围(2)对进行分类讨论,分为:和,利用零点存在定理和数形结合进行分析,即可求解【详解】解:(1)因为是增函数,是减函数,所以在上单调递增.所以的最小值为,所以,解得,所以实数k的取值范围是.(2)函数的图象在上连续不断.①当时,因为与在上单调递增,所以在上单调递增.因为,,所以.根据函数零点存在定理,存在,使得.所以在上有且只有一个零点.②当时,因为单调递增,所以,因为.所以.所以在上没有零点.综上:有且只有一个零点.因为,即,所以,.因为在上单调递减,所以,所以.【点睛】关键点睛:对进行分类讨论时,①当时,因为与在上单调递增,再结合零点存在定理,即可求解;②当时,恒成立,所以,在上没有零点;最后利用,得到,然后化简可求解。本题考查函数的性质,函数的零点等知识;考查学生运算求解,推理论证的能力;考查数形结合,分类与整合,函数与方程,化归与转化的数学思想,属于难题20、(1)(2)【解析】(1)根据偶函数的定义直接求解即可;(2)由题知命题“,”为真命题,进而得对,且恒成立,再分离参数求解即可得的取值范围是【小问1详解】解:因为函数为偶函数,所以,即,所以,即,所以.【小问2详解】解:因为命题“,”为假命题,所以命题“,”为真命题,所以,对,且恒成立,所以,对,且恒成立,由对勾函数性质知,函数在上单调递增,所以,且,即实数的取值

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论