版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
广东省深圳市2025届高二数学第一学期期末质量跟踪监视试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.命题“存在,使得”为真命题的一个充分不必要条件是()A. B.C. D.2.设函数在上单调递减,则实数的取值范围是()A. B.C. D.3.若直线的一个方向向量为,直线的一个方向向量为,则直线与所成的角为()A30° B.45°C.60° D.90°4.已知、分别为双曲线的左、右焦点,且,点P为双曲线右支一点,为的内心,若成立,给出下列结论:①点的横坐标为定值a;②离心率;③;④当轴时,上述结论正确的是()A.①② B.②③C.①②③ D.②③④5.已知实数,满足则的最大值为()A.-1 B.0C.1 D.26.直线的倾斜角的取值范围是()A. B.C. D.7.如图,在三棱锥中,,则三棱锥外接球的表面积是()A. B.C. D.8.已知等比数列的首项为1,公比为2,则=()A. B.C. D.9.已知函数在区间上是增函数,则实数的取值范围是()A. B.C. D.10.与圆和圆都外切的圆的圆心在()A.一个圆上 B.一个椭圆上C.双曲线的一支上 D.一条抛物线上11.如图,某铁路客运部门设计的从甲地到乙地旅客托运行李的费用c(元)与行李质量w(kg)之间的流程图.已知旅客小李和小张托运行李的质量分别为30kg,60kg,且他们托运的行李各自计费,则这两人托运行李的费用之和为()A.28元 B.33元C.38元 D.48元12.设为空间中的四个不同点,则“中有三点在同一条直线上”是“在同一个平面上”的()A.充分非必要条件 B.必要非充分条件C.充要条件 D.既非充分又非必要条件二、填空题:本题共4小题,每小题5分,共20分。13.已知点是抛物线的准线与x轴的交点,F为抛物线的焦点,P是抛物线上的动点,则最小值为_____14.已知、双曲线的左、右焦点,A、B为双曲线上关于原点对称的两点,且满足,,则双曲线的离心率为___________.15.已知O为坐标原点,抛物线C:的焦点为F,P为C上一点,PF与x轴垂直,Q为x轴上一点,且,若,则______.16.过点作圆的切线l,直线与l平行,则直线l过定点_________,与l间的距离为____________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,在空间直角坐标系中有长方体,且,,点E在棱AB上移动.(1)证明:;(2)当E为AB的中点时,求直线AC与平面所成角的正弦值.18.(12分)已知函数f(x)=x﹣lnx(1)求曲线y=f(x)在点(1,f(1))处的切线方程;(2)求函数f(x)的极值.19.(12分)如图,几何体是圆柱的一部分,它是由矩形(及其内部)以边所在直线为旋转轴旋转得到的封闭图形.(1)设,,求这个几何体的表面积;(2)设G是弧DF的中点,设P是弧CE上的一点,且.求异面直线AG与BP所成角的大小.20.(12分)某地区2021年清明节前后3天每天下雨的概率为50%,通过模拟实验的方法来计算该地区这3天中恰好有2天下雨的概率.用随机数x(,且)表示是否下雨:当时表示该地区下雨,当时,表示该地区不下雨,从随机数表中随机取得20组数如下:332714740945593468491272073445992772951431169332435027898719(1)求出m的值,并根据上述数表求出该地区清明节前后3天中恰好有2天下雨的概率;(2)从2012年到2020年该地区清明节当天降雨量(单位:)如表:(其中降雨量为0表示没有下雨).时间2012年2013年2014年2015年2016年2017年2018年2019年2020年年份t123456789降雨量y292826272523242221经研究表明:从2012年至2021年,该地区清明节有降雨的年份的降雨量y与年份t成线性回归,求回归直线方程,并计算如果该地区2021年()清明节有降雨的话,降雨量为多少?(精确到0.01)参考公式:,参考数据:,,,21.(12分)如图,在四棱锥中,,,,,为中点,且平面.(1)求点到平面的距离;(2)线段上是否存在一点,使平面?如果不存在,请说明理由;如果存在,求的值.22.(10分)分别求满足下列条件的曲线方程(1)以椭圆的短轴顶点为焦点,且离心率为的椭圆方程;(2)过点,且渐近线方程为的双曲线的标准方程
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】“存在,使得”为真命题,可得,利用二次函数的单调性即可得出.再利用充要条件的判定方法即可得出.【详解】解:因为“存在,使得”为真命题,所以,因此上述命题得个充分不必要条件是.故选:B.【点睛】本题考查了二次函数的单调性、充要条件的判定方法,考查了推理能力与计算能力,属于中档题.2、B【解析】分析可知,对任意的恒成立,由参变量分离法可得出,求出在时的取值范围,即可得出实数的取值范围.【详解】因为,则,由题意可知对任意的恒成立,则对任意的恒成立,当时,,.故选:B.3、C【解析】直接由公式,计算两直线的方向向量的夹角,进而得出直线与所成角的大小【详解】因为,,所以,所以,所以直线与所成角的大小为故选:C4、C【解析】利用双曲线的定义、几何性质以及题意对选项逐个分析判断即可【详解】对于①,设内切圆与的切点分别为,则由切线长定理可得,因为,,所以,所以点的坐标为,所以点的横坐标为定值a,所以①正确,对于②,因为,所以,化简得,即,解得,因为,所以,所以②正确,对于③,设的内切圆半径为,由双曲线的定义可得,,因为,,所以,所以,所以③正确,对于④,当轴时,可得,此时,所以,所以④错误,故选:C5、D【解析】由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,把最优解的坐标代入目标函数,即可得到结果【详解】由约束条件画出可行域如图,化目标函数为,由图可知当直线过点时,直线在轴上的截距最小,取得最大值2.故选:D6、A【解析】由直线方程求得直线斜率的范围,再由斜率等于倾斜角的正切值可得直线的倾斜角的取值范围.【详解】∵直线的斜率,,设直线的倾斜角为,则,解得.故选:A.7、A【解析】根据题意,将该几何体放置于正方体中截得,进而转化为求边长为2的正方体的外接球,再求解即可.【详解】解:因为在三棱锥中,,所以将三棱锥补形成正方体如图所示,正方体的边长为2,则体对角线长为,外接球的半径为,所以外接球的表面积为,故选:.8、D【解析】数列是首项为1,公比为4的等比数列,然后可算出答案.【详解】因为等比数列的首项为1,公比为2,所以数列是首项为1,公比为4的等比数列所以故选:D9、D【解析】由在上恒成立,再转化为求函数的取值范围可得【详解】由已知,在上是增函数,则在上恒成立,即,,当时,,所以故选:D10、C【解析】设动圆的半径为,然后根据动圆与两圆都外切得,再两式相减消去参数,则满足双曲线的定义,即可求解.【详解】设动圆的圆心为,半径为,而圆的圆心为,半径为1;圆的圆心为,半径为2依题意得,则,所以点的轨迹是双曲线的一支故选:C11、D【解析】根据程序框图分别计算小李和小张托运行李的费用,再求和得出答案.【详解】由程序框图可知,当时,元;当时,元,所以这两人托运行李的费用之和为元.故选:D12、A【解析】由公理2的推论即可得到答案.【详解】由公理2的推论:过一条直线和直线外一点,有且只有一个平面,可得在同一平面,故充分条件成立;由公理2的推论:过两条平行直线,有且只有一个平面,可得,当时,同一个平面上,但中无三点共线,故必要条件不成立;故选:A【点睛】本题考查点线面的位置关系和充分必要条件的判断,重点考查公理2及其推论;属于中档题;公理2的三个推论:经过一条直线和直线外一点,有且只有一个平面;经过两条平行直线,有且只有一个平面;经过两条相交直线,有且只有一个平面;二、填空题:本题共4小题,每小题5分,共20分。13、【解析】利用已知条件求出p,设出P的坐标,然后求解的表达式,利用基本不等式即可得出结论【详解】解:由题意可知:,设点,P到直线的距离为d,则,所以,当且仅当x时,的最小值为,此时,故答案为:【点睛】本题考查抛物线的简单性质的应用,基本不等式的应用,属于中档题14、【解析】可得四边形为矩形,运用三角函数的定义可得,,由双曲线的定义和矩形的性质,可得,由离心率公式求解即可.【详解】、为双曲线的左、右焦点,可得四边形为矩形,在中,,∴,在中,,可得,,∴,∴,∵,∴,∴,故答案为:.【点睛】关键点点睛:得出四边形为矩形,利用双曲线的定义解决焦点三角形问题.15、3【解析】先求点坐标,再由已知得Q点坐标,由列方程得解.【详解】抛物线:()的焦点,∵P为上一点,与轴垂直,所以P的横坐标为,代入抛物线方程求得P的纵坐标为,不妨设,因为Q为轴上一点,且,所以Q在F的右侧,又,,,因为,所以,,所以3故答案为:3.16、①.②.##2.4【解析】利用直线与平行,结合切线的性质求出切线的方程,即可确定定点坐标,再利用两条平行线间的距离公式求两线距离.【详解】由题意,直线斜率,设直线的方程为,即∴直线l过定点,由与圆相切,得,解得,∴的方程为,的方程为,则两直线间的距离为故答案为:;.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)证明见解析(2)【解析】(1)设,求出,,利用向量法能求出;(2)求出平面的法向量,利用向量法能求出直线与平面所成角的正弦值【小问1详解】证明:设,,,,;【小问2详解】当为的中点时,,,设平面的法向量,则,取,得,设直线与平面所成角为,则直线与平面所成角的正弦值为:18、(1)(2)极小值为,无极大值【解析】(1)求出函数的导函数,再根据导数的几何意义即可求出切线方程;(2)根据导数的符号求出函数的单调区间,再根据极值的定义即可得出答案.【小问1详解】解:,则,,即切线的斜率为0,所以曲线y=f(x)在点(1,f(1))处曲线的切线方程为;小问2详解】当时,,当时,,所以函数在上递减,在上递增,函数的极小值为,无极大值.19、(1)(2)【解析】(1)将几何体的表面积分成上下两个扇形、两个矩形和一个圆柱形侧面的一部分组成,分别求出后相加即可;(2)先根据条件得到面,通过平移将异面直线转化为同一个平面内的直线夹角即可【小问1详解】上下两个扇形的面积之和为:两个矩形面积之和为:4侧面圆弧段的面积为:故这个几何体的表面积为:【小问2详解】如下图,将直线平移到下底面上为由,且,,可得:面则而G是弧DF的中点,则由于上下两个平面平行且全等,则直线与直线的夹角等于直线与直线的夹角,即为所求,则则直线与直线的夹角为20、(1),;(2);该地区2020年清明节有降雨的话,降雨量为20.2mm【解析】(1)利用概率模拟求概率;(2)套用公式求回归直线方程即可.【详解】解:(1)由题意可知,,解得,即表示下雨,表示不下雨,所给的20组数据中714,740,491,272,073,445,435,027,共8组表示3天中恰有两天下雨,故所求的概率为;(2)由题中所给的数据可得,,所以,,所以回归方程为,当时,,所以该地区2020年清明节有降雨的话,降雨量为20.2mm【点睛】求线性回归方程的步骤:①求出;②套公式求出;③写出回归方程;④利用回归方程进行预报;21、(1)(2)线段上存在一点,当时,平面.【解析】(1)设点到平面的距离为,则由,由体积法可得答案.(2)由(1)连接,可得则从而平面,过点作交于点,连接,可证明平面平面,从而可得出答案.【小问1详解】由,,为中点,则由平面,平面,则又,且,则平面又,则平面,且都在平面内所以所以,取的中点,连接,则,所以,所以所以所以则设点到平面的距离为,则由即,即【
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 在乡村实习证明模板(6篇)
- 公司法务基础知识题库单选题100道及答案解析
- 语文统编版(2024)一年级上册识字4.日月山川 教案
- 《学前儿童卫生保健》 教案 12 项目二:学前儿童意外事故的急救1
- 第2章 第5节 营养学基础课件
- 学校传染病控制课件
- 2024-2025学年专题10.3 物体的浮沉条件及应用-八年级物理人教版(下册)含答案
- 2024届山西省太原市第四十八中学高三下学期3月线上教学数学试题检测试题卷二
- 第3章 圆的基本性质 浙教版数学九年级上册章末训练题(含答案)
- 招考《弯道跑》说课稿
- 浙江省9+1高中联盟2022-2023学年高一上学期11月期中化学试题 含解析
- 人教版七年级数学上学期《1.4-有理数的乘除法》同步练习卷
- 《中医基础理论》课程教案
- 北师大版生物八年级上册 第20章 第1节 遗传和变异现象(1)(教案)
- 2024年移动网格长认证考试题库大全及答案
- 2024-2030年中国机械计数器行业应用动态与发展前景预测报告
- 湖南省湘楚名校联考2024-2025学年高三上学期8月月考英语试题
- 2024年交通运输行政执法资格考试试题
- 承包蟹塘合同
- 小学思政课《爱国主义教育》
- 服务器设备到货验收
评论
0/150
提交评论