版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
北京四中2025届数学高二上期末质量跟踪监视试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.在三棱锥中,平面,,,,Q是边上的一动点,且直线与平面所成角的最大值为,则三棱锥的外接球的表面积为()A. B.C. D.2.等比数列的各项均为正数,且,则()A.5 B.10C.4 D.3.2019年湖南等8省公布了高考改革综合方案将采取“”模式即语文、数学、英语必考,考生首先在物理、历史中选择1门,然后在思想政治、地理、化学、生物中选择2门,一名同学随机选择3门功课,则该同学选到历史、地理两门功课的概率为()A. B.C. D.4.将一颗骰子先后抛掷2次,观察向上的点数,则点数之和是4的倍数但不是3的倍数的概率为()A. B.C. D.5.函数直线与的图象相交于A、B两点,则的最小值为()A.3 B.C. D.6.在正方体中中,,若点P在侧面(不含边界)内运动,,且点P到底面的距离为3,则异面直线与所成角的余弦值是()A. B.C. D.7.下列说法或运算正确的是()A.B.用反证法证明“一个三角形至少有两个锐角”时需设“一个三角形没有锐角”C.“,”的否定形式为“,”D.直线不可能与圆相切8.已知,则“”是“直线与平行”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件9.小明骑车上学,开始时匀速行驶,途中因交通堵塞停留了一段时间,后为了赶时间加快速度行驶.与以上事件吻合得最好的图象是()A. B.C. D.10.已知圆:和点,是圆上一点,线段的垂直平分线交于点,则点的轨迹方程是:()A. B.C. D.11.命题“若,则”为真命题,那么不可能是()A. B.C. D.12.已知一个圆锥的体积为,任取该圆锥的两条母线a,b,若a,b所成角的最大值为,则该圆锥的侧面积为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.围棋是一种策略性两人棋类游戏.已知某围棋盒子中有若干粒黑子和白子,从盒子中取出2粒棋子,2粒都是黑子的概率为,2粒恰好是同一色的概率比不同色的概率大,则2粒恰好都是白子的概率是______14.若,,,四点中恰有三点在椭圆上,则椭圆C的方程为________.15.若命题“,不等式恒成立”为真命题,则实数a的取值范围是________.16.空间四边形中,,,,,,,则与所成角的余弦值等于___________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,在四棱柱中,侧棱底面,,,,,,,()(1)求证:平面;(2)若直线与平面所成角的正弦值为,求的值;(3)现将与四棱柱形状和大小完全相同的两个四棱柱拼成一个新的四棱柱,规定:若拼成的新四棱柱形状和大小完全相同,则视为同一种拼接方案,问共有几种不同的拼接方案?在这些拼接成的新四棱柱中,记其中最小的表面积为,写出的解析式.(直接写出答案,不必说明理由)18.(12分)如图,在四棱锥中,底面ABCD,,,,(1)证明:;(2)当PB的长为何值时,直线AB与平面PCD所成角的正弦值为?19.(12分)设命题对于任意,不等式恒成立.命题实数a满足(1)若命题p为真,求实数a的取值范围;(2)若“p或q”为真,“p且q”为假,求实数a的取值范围20.(12分)已知抛物线的焦点为,经过点的直线与抛物线交于两点,其中点A在第一象限;(1)若直线的斜率为,求的值;(2)求线段的长度的最小值21.(12分)如图,在四棱锥中,平面平面,,,是边长为的等边三角形,是以为斜边的等腰直角三角形,点为线段的中点.(1)证明:平面;(2)求直线与平面所成角的正弦值.22.(10分)已知,:,:.(1)若,为真命题,为假命题,求实数的取值范围;(2)若是的充分不必要条件,求实数的取值范围
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】由平面,直线与平面所成角的最大时,最小,也即最小,,由此可求得,从而得,得长,然后取外心,作,取H为的中点,使得,则易得,求出的长即为外接球半径,从而可得面积【详解】三棱锥中,平面,直线与平面所成角为,如图所示;则,且的最大值是,,的最小值是,即A到的距离为,,,在中可得,又,,可得;取的外接圆圆心为,作,取H为的中点,使得,则易得,由,解得,,,,由勾股定理得,所以三棱锥的外接球的表面积是.【点睛】本题考查求球的表面积,解题关键是确定球的球心,三棱锥的外接球心在过各面外心且与此面垂直的直线上2、A【解析】利用等比数列的性质及对数的运算性质求解.【详解】由题有,则=5.故选:A3、A【解析】先由列举法计算出基本事件的总数,然后再求出该同学选到历史、地理两门功课的基本事件的个数,基本事件个数比即为所求概率.【详解】由题意,记物理、历史分别为、,从中选择1门;记思想政治、地理、化学、生物为、、、,从中选择2门;则该同学随机选择3门功课,所包含的基本事件有:,,,,,,,,,,,,共个基本事件;该同学选到历史、地理两门功课所包含的基本事件有:,,共个基本事件;该同学选到物理、地理两门功课的概率为.故选:A.【点睛】本题考查求古典概型的概率,属于基础题型.4、B【解析】基本事件总数,再利用列举法求出点数之和是4的倍数但不是3的倍数包含的基本事件的个数,由此能求出点数之和是4的倍数但不是3的倍数的概率【详解】解:将一颗骰子先后抛掷2次,观察向上的点数之和,基本事件总数,点数之和是4的倍数但不是3的倍数包含的基本事件有:,,,,,,,,共8个,则点数之和是4的倍数但不是3的倍数的概率为故选:B5、C【解析】先求出AB坐标,表示出,规定函数,其中,利用导数求最小值.【详解】联立解得可得点.联立解得可得点.由题意可得解得,令,其中,∴.∴函数单调递减;.因此,的最小值为故选:C【点睛】距离的最值求解:(1)几何法求最值;(2)代数法:表示出距离,利用函数求最值.6、A【解析】如图建立空间直角坐标系,先由,且点P到底面的距离为3,确定点P的位置,然后利用空间向量求解即可【详解】如图,以为坐标原点,以所在的直线分别为轴,建立空间直角坐标系,则,所以,所以,所以,因为,所以平面,因为平面平面,点P在侧面(不含边界)内运动,,所以,因为点P到底面的距离为3,所以,所以,因为,所以异面直线与所成角的余弦值为,故选:A7、D【解析】对于A:可以解决;对于B:“一个三角形至少由两个锐角”的反面是“只有一个锐角或没有锐角”;对于C:全称否定必须是全部否定;对于D:需要观察出所给直线是过定点的.【详解】A:,故错误;B:“一个三角形至少由两个锐角”的反面是“只有一个锐角或没有锐角”,所以用反证法时应假设只有一个锐角和没有锐角两种情况,故错误;C:的否定形式是,故错误;D:直线是过定点(-1,0),而圆,圆心为(2,0),半径为4,定点(-1,0)到圆心的距离为2-(-1)=3<4,故定点在圆内,故正确;故选:D.8、A【解析】首先由两直线平行的充要条件求出参数的取值,再根据充分条件、必要条件的定义判断即可;【详解】因为直线与平行,所以,解得或,所以“”是“直线与平行”的充分不必要条件.故选:A.9、C【解析】先研究四个选项中图象的特征,再对照小明上学路上的运动特征,两者对应即可选出正确选项.【详解】考查四个选项,横坐标表示时间,纵坐标表示的是离开学校的距离,由此知,此函数图象一定是下降的,由此排除A;再由小明骑车上学,开始时匀速行驶可得出图象开始一段是直线下降型,又途中因交通堵塞停留了一段时间,故此时有一段函数图象与x轴平行,由此排除D,之后为了赶时间加快速度行驶,此一段时间段内函数图象下降的比较快,由此可确定C正确,B不正确故选C【点睛】本题考查函数的表示方法,关键是理解坐标系的度量与小明上学的运动特征,属于基础题.10、B【解析】先由在线段的垂直平分线上得出,再由题意得出,进而由椭圆定义可求出点的轨迹方程.【详解】如图,因为在线段的垂直平分线上,所以,又点在圆上,所以,因此,点在以、为焦点的椭圆上.其中,,则.从而点的轨迹方程是.故选:B.11、D【解析】根据命题真假的判断,对四个选项一一验证即可.【详解】对于A:若,则必成立;对于B:若,则必成立;对于C:若,则必成立;对于D:由不能得出,所以不可能是.故选:D12、B【解析】设圆锥的母线长为R,底面半径长为r,由题可知圆锥的轴截面是等边三角形,根据体积公式计算可得,利用扇形的面积公式计算即可求得结果.【详解】如图,设圆锥的母线长为R,底面半径长为r,由题可知圆锥的轴截面是等边三角形,所以,圆锥的体积,解得,所以该圆锥的侧面积为.故选:B二、填空题:本题共4小题,每小题5分,共20分。13、【解析】根据互斥事件与对立事件概率公式求解即可【详解】设“2粒都是黑子”为事件,“2粒都是白子”为事件,“2粒恰好是同一色”为事件,“2粒不同色”为事件,则事件与事件是对立事件,所以因为2粒恰好是同一色的概率比不同色的概率大,所以,所以,又,且事件与互斥,所以,所以故答案为:14、【解析】由于,关于轴对称,故由题设知C经过,两点,C不经过点,然后求出a,b,即可得到椭圆的方程.【详解】解:由于,关于轴对称,故由题设知经过,两点,所以.又由知,不经过点,所以点在上,所以.因此,故方程为.故答案为:.【点睛】求椭圆的标准方程有两种方法:①定义法:根据椭圆的定义,确定,的值,结合焦点位置可写出椭圆方程②待定系数法:若焦点位置明确,则可设出椭圆的标准方程,结合已知条件求出,;若焦点位置不明确,则需要分焦点在轴上和轴上两种情况讨论,也可设椭圆的方程为15、【解析】,不等式恒成立,只要即可,利用基本不等式求出即可得出答案.【详解】解:因为,不等式恒成立,只要即可,因为,所以,则,当且仅当,即时取等号,所以,所以.故答案为:.16、【解析】计算出的值,利用空间向量的数量积可得出的值,即可得解.【详解】,,所以,,所以,.所以,与所成角的余弦值为.故答案为:.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)证明见解析(2)(3)【解析】(1)取得中点,连接,可证明四边形是平行四边形,再利用勾股定理的逆定理可得,即,又侧棱底面,可得,利用线面垂直的判定定理即可证明;(2)通过建立空间直角坐标系,由线面角的向量公式即可得出;(3)由题意可与左右平面,,上或下面,拼接得到方案,新四棱柱共有此4种不同方案.写出每一方案下的表面积,通过比较即可得出【详解】(1)证明:取的中点,连接,,,四边形是平行四边形,,且,,,,又,侧棱底面,,,平面(2)以为坐标原点,、、的方向为轴的正方向建立空间直角坐标系,则,,,,,设平面的一个法向量为,则,取,则,设与平面所成角为,则,解得,故所求(3)由题意可与左右平面,,上或下面,拼接得到方案新四棱柱共有此4种不同方案写出每一方案下的表面积,通过比较即可得出【点睛】本题主要考查线面垂直的判定定理的应用,利用向量求线面角、柱体的定义应用和表面积的求法,意在考查学生的直观想象能力,逻辑推理能力,数学运算能力及化归与转化能力,属于中档题18、(1)证明见解析(2)【解析】(1)由线面垂直的判断定理证明平面PAB,再由线面垂直的性质定理即可证明;(2)以A为原点,AB,AC,AP分别为x轴,y轴,z轴,建立空间直角坐标系,设,求出平面PCD的法向量的坐标,根据直线AB与平面PCD所成角的正弦值为,利用向量法可求得,从而可求解PB的长.【小问1详解】证明:因为底面ABCD,又平面ABCD,所以,又,,AB,平面PAB,所以平面PAB,又平面PAB,所以;小问2详解】解:因为底面ABCD,,所以以A为原点,AB,AC,AP分别为x轴,y轴,z轴,建立如图所示空间直角坐标系,因为,,,所以,则,,所以,,,,设,则,,,设平面PCD的法向量为,则,令,则,,所以,所以,解得,则,所以当时,直线AB与平面PCD所成角正弦值为19、(1)(2)【解析】(1)由即可获解(2)p、q一真一假,分情况讨论即可【小问1详解】由命题为真,得任意,不等式恒成立所以即所以实数的取值范围为【小问2详解】由命题为真,得因为“或”为真,“且”为假,所以p、q一真一假若真假,则,即若假真,即所以实数的取值范围为20、(1)3;(2)12.【解析】(1)联立直线l与抛物线C的方程,求出A和B的横坐标即可得AFBF(2)设直线l方程为,与抛物线C方程联立,求出线段AB长度求其最小值即可.【小问1详解】设,抛物线的焦点为,直线l经过点F且斜率,直线l的方程为,将直线l方程与抛物线消去y可得,点A是第一象限内的交点,解方程得,∴.【小
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 在乡村实习证明模板(6篇)
- 公司法务基础知识题库单选题100道及答案解析
- 语文统编版(2024)一年级上册识字4.日月山川 教案
- 《学前儿童卫生保健》 教案 12 项目二:学前儿童意外事故的急救1
- 第2章 第5节 营养学基础课件
- 学校传染病控制课件
- 2024-2025学年专题10.3 物体的浮沉条件及应用-八年级物理人教版(下册)含答案
- 2024届山西省太原市第四十八中学高三下学期3月线上教学数学试题检测试题卷二
- 第3章 圆的基本性质 浙教版数学九年级上册章末训练题(含答案)
- 招考《弯道跑》说课稿
- 停车场保洁服务方案
- 小学语文人教四年级下册(统编)(教研版)第四单元-《神话中的偷窃者》教学设计
- 国家医疗健康信息区域卫生信息互联互通标准化成熟度测评方案版
- 六年级下册数学课件-课前预习:1.1负数的认识 人教版(共13张PPT)
- 游乐设施安全管理手册
- 小学生心理辅导案例-共10篇
- 应聘人员面试登记表
- 《设计美学》PPT课件共66页
- 职业卫生法律法规和标准课件
- 小学综合实践活动课--“春节习俗知多少”活动设计
- 人教版六年级上册数学8数学广角-数与形课件(共17张PPT)
评论
0/150
提交评论