版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届江西省九江市彭泽一中高一数学第一学期期末统考模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知点位于第二象限,那么角所在的象限是A.第一象限 B.第二象限C.第三象限 D.第四象限2.若函数是函数(且)的反函数,且,则()A. B.C. D.3.已知水平放置的四边形按斜二测画法得到如图所示的直观图,其中,,,,则原四边形的面积为()A. B.C. D.4.三个数大小的顺序是A. B.C. D.5.,表示不超过的最大整数,十八世纪,函数被“数学王子”高斯采用,因此得名高斯函数,人们更习惯称之为“取整函数”,则()A.0 B.1C.7 D.86.已知集合,,则中元素的个数是()A. B.C. D.7.已知函数的值域为,则实数a的取值范围是()A. B.C. D.8.函数y=log2的定义域A.(,3) B.(,+∞)C.(,3) D.[,3]9.如图,在正三棱柱中,,若二面角的大小为,则点C到平面的距离为()A.1 B.C. D.10.函数的零点所在区间是A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知集合A={x|2x>1},B={x|log2x<0},则∁AB=___12.若函数(其中)在区间上不单调,则的取值范围为__________.13.已知甲、乙两组数据已整理成如图所示的茎叶图,则甲组数据的中位数是___________,乙组数据的25%分位数是___________14.已知圆C1:(x+1)2+(y-1)2=1,圆C2与圆C1关于直线x-y-1=0对称,则圆C2的方程为______15.已知A,B,C为的内角.(1)若,求的取值范围;(2)求证:;(3)设,且,,,求证:16.已知某扇形的半径为,面积为,那么该扇形的弧长为________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.由历年市场行情知,从11月1日起的30天内,某商品每件的销售价格(元)与时间(天)的函数关系是,日销售量(件)与时间(天)的函数关系是.(1)设该商品的日销售额为y元,请写出y与t的函数关系式;(商品的日销售额=该商品每件的销售价格×日销售量)(2)求该商品的日销售额的最大值,并指出哪一天的销售额最大?18.求值:(1);(2)19.已知函数;(1)若,使得成立,求的集合(2)已知函数的图象关于点对称,当时,.若对使得成立,求实数的取值范围20.已知直线经过点,且与直线垂直.(1)求直线的方程;(2)若直线与平行且点到直线的距离为,求直线的方程.21.已知函数的部分图象如图所示,且在处取得最大值,图象与轴交于点(1)求函数的解析式;(2)若,且,求值
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】通过点所在象限,判断三角函数的符号,推出角所在的象限.【详解】点位于第二象限,可得,,可得,,角所在的象限是第三象限故选C.【点睛】本题考查三角函数的符号的判断,是基础题.第一象限所有三角函数值均为正,第二象限正弦为正,其它为负,第三象限正切为正,其它为负,第四象限余弦为正,其它为负.2、B【解析】由题意可得出,结合可得出的值,进而可求得函数的解析式.【详解】由于函数是函数(且)的反函数,则,则,解得,因此,.故选:B.3、B【解析】根据直观图画出原图,可得原图形为直角梯形,计算该直角梯形的面积即可.【详解】过点作,垂足为则由已知可得四边形为矩形,为等腰直角三角形,根据直观图画出原图如下:可得原图形为直角梯形,,且,可得原四边形的面积为故选:B.4、B【解析】根据指数函数和对数函数的单调性知:,即;,即;,即;所以,故正确答案为选项B考点:指数函数和对数函数的单调性;间接比较法5、D【解析】根据函数的新定义求解即可.【详解】由题意可知4-(-4)=8.故选:D.6、B【解析】根据并集的定义进行求解即可.【详解】由题意得,,显然中元素的个数是5.故选:B7、B【解析】令,要使已知函数的值域为,需值域包含,对系数分类讨论,结合二次函数图像,即可求解.【详解】解:∵函数的值域为,令,当时,,不合题意;当时,,此时,满足题意;当时,要使函数的值域为,则函数的值域包含,,解得,综上,实数的取值范围是.故选:B【点睛】关键点点睛:要使函数的值域为,需要作为真数的函数值域必须包含,对系数分类讨论,结合二次函数图像,即可求解.8、A【解析】由真数大于0,求解对分式不等式得答案;【详解】函数y=log2的定义域需满足故选A.【点睛】】本题考查函数的定义域及其求法,考查分式不等式的解法,是中档题9、C【解析】取的中点,连接和,由二面角的定义得出,可得出、、的值,由此可计算出和的面积,然后利用三棱锥的体积三棱锥的体积相等,计算出点到平面的距离.【详解】取的中点,连接和,根据二面角的定义,.由题意得,所以,.设到平面的距离为,易知三棱锥的体积三棱锥的体积相等,即,解得,故点C到平面的距离为.故选C.【点睛】本题考查点到平面距离的计算,常用的方法有等体积法与空间向量法,等体积法本质就是转化为三棱锥的高来求解,考查计算能力与推理能力,属于中等题.10、C【解析】根据函数零点存在性定理进行判断即可【详解】∵,,∴,∴函数在区间(2,3)上存在零点故选C【点睛】求解函数零点存在性问题常用的办法有三种:一是用定理,二是解方程,三是用图象.值得说明的是,零点存在性定理是充分条件,而并非是必要条件二、填空题:本大题共6小题,每小题5分,共30分。11、[1,+∞)【解析】由指数函数的性质化简集合;由对数函数的性质化简集合,利用补集的定义求解即可.【详解】,所以,故答案为.【点睛】研究集合问题,一定要抓住元素,看元素应满足的属性.研究两集合的关系时,关键是将两集合的关系转化为元素间的关系,本题实质求满足属于集合且不属于集合的元素的集合.12、【解析】化简f(x),结合正弦函数单调性即可求ω取值范围.【详解】,x∈,①ω>0时,ωx∈,f(x)在不单调,则,则;②ω<0时,ωx∈,f(x)在不单调,则,则;综上,ω的取值范围是.故答案为:.13、①.45②.35【解析】利用中位数的概念及百分位数的概念即得.【详解】由题可知甲组数据共9个数,所以甲组数据的中位数是45,由茎叶图可知乙组数据共9个数,又,所以乙组数据的25%分位数是35.故答案为:45;35.14、【解析】在圆C2上任取一点(x,y),则此点关于直线对称点(y+1,x-1)在圆C1:上,所以有(y+1+1)2+(x-1-1)2=1,即,所以答案为考点:点关于直线的对称点的求法点评:本题考查一曲线关于一直线对称的曲线方程的求法:在圆C2上任取一点(x,y),则此点关于直线的对称点(y+1,x-1)在圆C1上15、(1)(2)证明见解析(3)证明见解析【解析】(1)根据两角和的正切公式及均值不等式求解;(2)先证明,再由不等式证明即可;(3)找出不等式的等价条件,换元后再根据函数的单调性构造不等式,利用不等式性质即可得证.【小问1详解】,为锐角,,,解得,当且仅当时,等号成立,即.【小问2详解】在中,,,,.【小问3详解】由(2)知,令,原不等式等价为,在上为增函数,,,同理可得,,,,故不等式成立,问题得证.【点睛】本题第3问的证明需要用到,换元后转换为,再构造不等式是证明的关键,本题的难点就在利用函数单调性构造出不等式.16、【解析】根据扇形面积公式可求得答案.【详解】设该扇形的弧长为,由扇形的面积,可得,解得.故答案.【点睛】本题考查了扇形面积公式的应用,考查了学生的计算能力,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)日销售金额的最大值为900元,11月10日日销售金额最大【解析】(1)由日销售金额=每件的销售价格×日销售量可得;(2)利用二次函数的图像与性质可得结果.【详解】(1)设日销售额为元,则,所以即:(2)当时,,;当时,,故所求日销售金额的最大值为元,11月10日日销售金额最大.【点睛】本题主要考查了利用数学知识解决实际问题的能力,解题的关键是要把实际问题转化为数学问题,利用数学中二次函数的知识进行求解函数的最值.18、(1)(2)【解析】(1)利用指数幂计算公式化简求值;(2)利用对数计算公式换件求值.【小问1详解】【小问2详解】.19、(1)(2)【解析】(1)根据的值域列不等式,由此求得的取值范围.(2)先求得在时的值域,对进行分类讨论,由此求得的取值范围.【小问1详解】的值域为,所以,,,所以.所以的取值范围是.【小问2详解】由(1),当时,所以在时的值域为记函数的值域为.若对任意的,存在,使得成立,则因为时,,所以,即函数的图象过对称中心(i)当,即时,函数在上单调递增,由对称性知,在上单调递增,从而在上单调递增,由对称性得,则要使,只需,解得,所以,(ii)当,即时,函数在上单调递减,在上单调递增,由对称性知,在上单调递增,在上单调递减所以函数在上单调递减,在上单调递增,在上单调递减,,其中,要使,只需,解得,(iii)当,即时,函数在上单调递减,由对称性知,在上单调递减,从而在上单调递减.此时要使,只需,解得,综上可知,实数的取值范围是20、(1);(2)直线方程为或.【解析】⑴利用相互垂直的直线斜率之间的关系求出直线的斜率,代入即可得到直线的方程;⑵由已知设直线的方程为,根据点到直线的距离公式求得或,即可得到直线的方程解析:(1)由题意直线的斜率为1,所求直线方程为,即.(2)由直线与直线平行,可设直线的方程为,由点到直线的距离公式得
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 在乡村实习证明模板(6篇)
- 公司法务基础知识题库单选题100道及答案解析
- 语文统编版(2024)一年级上册识字4.日月山川 教案
- 《学前儿童卫生保健》 教案 12 项目二:学前儿童意外事故的急救1
- 第2章 第5节 营养学基础课件
- 学校传染病控制课件
- 2024-2025学年专题10.3 物体的浮沉条件及应用-八年级物理人教版(下册)含答案
- 2024届山西省太原市第四十八中学高三下学期3月线上教学数学试题检测试题卷二
- 第3章 圆的基本性质 浙教版数学九年级上册章末训练题(含答案)
- 招考《弯道跑》说课稿
- 停车场保洁服务方案
- 小学语文人教四年级下册(统编)(教研版)第四单元-《神话中的偷窃者》教学设计
- 国家医疗健康信息区域卫生信息互联互通标准化成熟度测评方案版
- 六年级下册数学课件-课前预习:1.1负数的认识 人教版(共13张PPT)
- 游乐设施安全管理手册
- 小学生心理辅导案例-共10篇
- 应聘人员面试登记表
- 《设计美学》PPT课件共66页
- 职业卫生法律法规和标准课件
- 小学综合实践活动课--“春节习俗知多少”活动设计
- 人教版六年级上册数学8数学广角-数与形课件(共17张PPT)
评论
0/150
提交评论