版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
五年(2019-2023)年高考真题分项汇编专题05立体几何(理科)(选填题)立体几何在文科数高考中属于重点知识点,难度中等。包含题型主要是1空间几何体基本性质及表面积体积2空间几何题三视图3空间几何体内切球外接球的应用4空间几何体情景化应用考点01空间几何体基本性质及表面积体积一、单选题1.(2023·全国·统考乙卷)已知圆锥PO的底面半径为,O为底面圆心,PA,PB为圆锥的母线,,若的面积等于,则该圆锥的体积为(
)A. B. C. D.2.(2023·全国·统考甲卷)已知四棱锥的底面是边长为4的正方形,,则的面积为(
)A. B. C. D.3.(2023·天津·统考高考真题)在三棱锥中,线段上的点满足,线段上的点满足,则三棱锥和三棱锥的体积之比为(
)A. B. C. D.4.(2022·全国·统考高考乙卷)在正方体中,E,F分别为的中点,则(
)A.平面平面 B.平面平面C.平面平面 D.平面平面5.(2022·全国·统考高考甲卷)甲、乙两个圆锥的母线长相等,侧面展开图的圆心角之和为,侧面积分别为和,体积分别为和.若,则(
)A. B. C. D.6.(2022·北京·统考高考真题)已知正三棱锥的六条棱长均为6,S是及其内部的点构成的集合.设集合,则T表示的区域的面积为(
)A. B. C. D.7.(2021·全国·统考高考Ⅰ卷)已知圆锥的底面半径为,其侧面展开图为一个半圆,则该圆锥的母线长为(
)A. B. C. D.8.(2019·全国·统考高考Ⅲ卷)如图,点为正方形的中心,为正三角形,平面平面是线段的中点,则A.,且直线是相交直线B.,且直线是相交直线C.,且直线是异面直线D.,且直线是异面直线二、填空题9.(2023·全国新高考·Ⅱ卷)底面边长为4的正四棱锥被平行于其底面的平面所截,截去一个底面边长为2,高为3的正四棱锥,所得棱台的体积为.10.(2020·全国·新高考Ⅱ卷)已知正方体ABCD-A1B1C1D1的棱长为2,M、N分别为BB1、AB的中点,则三棱锥A-NMD1的体积为11.(2020·全国·统考高考Ⅱ卷)设有下列四个命题:p1:两两相交且不过同一点的三条直线必在同一平面内.p2:过空间中任意三点有且仅有一个平面.p3:若空间两条直线不相交,则这两条直线平行.p4:若直线l平面α,直线m⊥平面α,则m⊥l.则下述命题中所有真命题的序号是.①②③④考点02空间几何体三视图一、单选题1.(2023·全国·统考高考乙卷)如图,网格纸上绘制的一个零件的三视图,网格小正方形的边长为1,则该零件的表面积为(
)
A.24 B.26 C.28 D.302.(2022·全国·统考高考甲卷)如图,网格纸上绘制的是一个多面体的三视图,网格小正方形的边长为1,则该多面体的体积为(
)A.8 B.12 C.16 D.203.(2021·全国·统考高考甲卷)在一个正方体中,过顶点A的三条棱的中点分别为E,F,G.该正方体截去三棱锥后,所得多面体的三视图中,正视图如图所示,则相应的侧视图是()A. B. C. D.4.(2021·北京·统考高考真题)某四面体的三视图如图所示,该四面体的表面积为(
)A. B. C. D.5.(2021·浙江·统考高考真题)某几何体的三视图如图所示,则该几何体的体积是(
)A. B.3 C. D.6.(2020·全国·统考高考Ⅱ卷)如图是一个多面体的三视图,这个多面体某条棱的一个端点在正视图中对应的点为,在俯视图中对应的点为,则该端点在侧视图中对应的点为(
)A. B. C. D.7.(2020·全国·统考高考Ⅲ卷)下图为某几何体的三视图,则该几何体的表面积是(
)A.6+4 B.4+4 C.6+2 D.4+28.(2020·北京·统考高考真题)某三棱柱的底面为正三角形,其三视图如图所示,该三棱柱的表面积为(
).A. B. C. D.二、填空题9.(2021·全国·统考高考乙卷)以图①为正视图,在图②③④⑤中选两个分别作为侧视图和俯视图,组成某个三棱锥的三视图,则所选侧视图和俯视图的编号依次为(写出符合要求的一组答案即可).10.(2019·北京·高考真题)某几何体是由一个正方体去掉一个四棱柱所得,其三视图如图所示.如果网格纸上小正方形的边长为1,那么该几何体的体积为.考点03空间几何体内接球外切球问题1.(2022·全国·统考高考乙卷)已知球O的半径为1,四棱锥的顶点为O,底面的四个顶点均在球O的球面上,则当该四棱锥的体积最大时,其高为(
)A. B. C. D.2.(2022·全国·统考新高考Ⅰ卷)已知正四棱锥的侧棱长为l,其各顶点都在同一球面上.若该球的体积为,且,则该正四棱锥体积的取值范围是(
)A. B. C. D.3.(2022·全国·统考新高考Ⅱ卷)已知正三棱台的高为1,上、下底面边长分别为和,其顶点都在同一球面上,则该球的表面积为(
)A. B. C. D.4.(2021·全国·统考高考甲卷)已知A,B,C是半径为1的球O的球面上的三个点,且,则三棱锥的体积为(
)A. B. C. D.5.(2020·全国·统考高考Ⅰ卷)已知为球的球面上的三个点,⊙为的外接圆,若⊙的面积为,,则球的表面积为(
)A. B. C. D.6.(2019·全国·高考Ⅰ卷)已知三棱锥P-ABC的四个顶点在球O的球面上,PA=PB=PC,△ABC是边长为2的正三角形,E,F分别是PA,AB的中点,∠CEF=90°,则球O的体积为A. B. C. D.二、填空题7.(2023·全国·统考高考甲卷)在正方体中,E,F分别为AB,的中点,以EF为直径的球的球面与该正方体的棱共有个公共点.8.(2019·全国·高考Ⅱ卷)中国有悠久的金石文化,印信是金石文化的代表之一.印信的形状多为长方体、正方体或圆柱体,但南北朝时期的官员独孤信的印信形状是“半正多面体”(图1).半正多面体是由两种或两种以上的正多边形围成的多面体.半正多面体体现了数学的对称美.图2是一个棱数为48的半正多面体,它的所有顶点都在同一个正方体的表面上,且此正方体的棱长为1.则该半正多面体共有个面,其棱长为.考点04空间几何题的情景化应用1.(2023·北京·统考高考真题)坡屋顶是我国传统建筑造型之一,蕴含着丰富的数学元素.安装灯带可以勾勒出建筑轮廓,展现造型之美.如图,某坡屋顶可视为一个五面体,其中两个面是全等的等腰梯形,两个面是全等的等腰三角形.若,且等腰梯形所在的平面、等腰三角形所在的平面与平面的夹角的正切值均为,则该五面体的所有棱长之和为(
)
A. B.C. D.2.(2022·全国·统考新高考Ⅱ卷)图1是中国古代建筑中的举架结构,是桁,相邻桁的水平距离称为步,垂直距离称为举,图2是某古代建筑屋顶截面的示意图.其中是举,是相等的步,相邻桁的举步之比分别为.已知成公差为0.1的等差数列,且直线的斜率为0.725,则(
)A.0.75 B.0.8 C.0.85 D.0.93.(2022·天津·统考高考真题)如图,“十字歇山”是由两个直三棱柱重叠后的景象,重叠后的底面为正方形,直三棱柱的底面是顶角为,腰为3的等腰三角形,则该几何体的体积为(
)A.23 B.24 C.26 D.274.(2021·全国·统考新高考Ⅱ卷)2020年12月8日,中国和尼泊尔联合公布珠穆朗玛峰最新高程为8848.86(单位:m),三角高程测量法是珠峰高程测量方法之一.如图是三角高程测量法的一个示意图,现有A,B,C三点,且A,B,C在同一水平面上的投影满足,.由C点测得B点的仰角为,与的差为100;由B点测得A点的仰角为,则A,C两点到水平面的高度差约为()(
)A.346 B.373 C.446 D.4735.(2021·全国·统考高考真题)北斗三号全球卫星导航系统是我国航天事业的重要成果.在卫星导航系统中,地球静止同步卫星的轨道位于地球赤道所在平面,轨道高度为(轨道高度是指卫星到地球表面的距离).将地球看作是一个球心为O,半径r为的球,其上点A的纬度是指与赤道平面所成角的度数.地球表面上能直接观测到一颗地球静止同步轨道卫星点的纬度最大值为,记卫星信号覆盖地球表面的表面积为(单位:),则S占地球表面积的百分比约为(
)A.26% B.34% C.42% D.50%6.(2020·全国·统考高考Ⅰ卷)埃及胡夫金字塔是古代世界建筑奇迹之一,它的形状可视为一个正四棱锥,以该四棱锥的高为边长的正方形面积等于该四棱锥一个侧面三角形的面积,则其侧面三角形底边上的高与底面正方形的边长的比值为(
)A. B. C. D.7.(2020·山东·统考高考真题)日晷是中国古代用来测定时间的仪器,利用与晷面垂直的晷针投射到晷面的影子来测定时间.把地球看成一个球(球心记为O),地球上一点A的纬度是指OA与地球赤道所在平面所成角,点A处的水平面是指过点A且与OA垂直的平面.在点A处
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024-2025学年新疆喀什第二中学高三上学期9月月考语文试题及答案
- 2024年广东省深圳市龙岗区中考英语二模试卷
- 上海市市辖区(2024年-2025年小学五年级语文)统编版专题练习((上下)学期)试卷及答案
- 上海市县(2024年-2025年小学五年级语文)人教版随堂测试((上下)学期)试卷及答案
- 郴州文物百咏作者:湖南省郴州市五岭大道陈友训
- 浙江省台州市台州十校2024-2025学年高一上学期11月期中联考数学试题含答案
- 2024届安徽省马鞍山市重点中学青浦高中高三下开学考数学试题
- 机电设备安装与调试技术教案
- 公立医院公益目标评估指标调查表
- 广东省广州市四校2024-2025学年九年级上学期11月期中化学试题(含答案)
- 第四章第3节运用选择结构描述问题求解过程说课 课件 2023-2024学年粤教版(2019)高中信息技术必修1
- Stable diffusion技术原理手册
- 认识大数据 课件 2022-2023学年粤教版(2019)高中信息技术必修1
- 儿童康复治疗进展课件
- 医疗机构护患沟通能力沟通技巧培训教学课件
- 石材保温一体板计算书分解
- 企业经营状况问卷调查表
- 地质调查员(地质灾害方向)职业技能竞赛试题
- 德尔格呼吸机培训分享课件
- 法制教育课件-课件
- 药品销售承包协议合同范本
评论
0/150
提交评论