版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
复变函数测验题PAGEPAGE4复数与复变函数选择题1.当时,的值等于()(A)(B)(C)(D)2.设复数满足,,那么()(A)(B)(C)(D)3.复数的三角表示式是()(A)(B)(C)(D)4.若为非零复数,则与的关系是()(A)(B)(C)(D)不能比较大小5.设为实数,且有,则动点的轨迹是()(A)圆(B)椭圆(C)双曲线(D)抛物线6.一个向量顺时针旋转,向右平移3个单位,再向下平移1个单位后对应的复数为,则原向量对应的复数是()(A)(B)(C)(D)7.使得成立的复数是()(A)不存在的(B)唯一的(C)纯虚数(D)实数8.设为复数,则方程的解是()(A)(B)(C)(D)9.满足不等式的所有点构成的集合是()(A)有界区域(B)无界区域(C)有界闭区域(D)无界闭区域10.方程所代表的曲线是()(A)中心为,半径为的圆周(B)中心为,半径为2的圆周(C)中心为,半径为的圆周(D)中心为,半径为2的圆周11.下列方程所表示的曲线中,不是圆周的为()(A)(B)(C)(D)12.设,则()(A)(B)(C)(D)13.()(A)等于(B)等于(C)等于(D)不存在14.函数在点处连续的充要条件是()(A)在处连续(B)在处连续(C)和在处连续(D)在处连续15.设且,则函数的最小值为()(A)(B)(C)(D)二、填空题1.设,则2.设,则3.设,则4.复数的指数表示式为5.以方程的根的对应点为顶点的多边形的面积为6.不等式所表示的区域是曲线的内部7.方程所表示曲线的直角坐标方程为8.方程所表示的曲线是连续点和的线段的垂直平分线9.对于映射,圆周的像曲线为10.三、若复数满足,试求的取值范围.四、设,在复数集中解方程.五、设复数,试证是实数的充要条件为或.六、对于映射,求出圆周的像.七、试证1.的充要条件为;2.的充要条件为.八、若,则存在,使得当时有.九、设,试证.十、设,试讨论下列函数的连续性:1.2..复数与复变函数答案一、1.(B)2.(A)3.(D)4.(C)5.(B)6.(A)7.(D)8.(B)9.(D)10.(C)11.(B)12.(C)13.(D)14.(C)15.(A)二、1.2.3.4.5.6.(或)7.8.9.10.三、(或).四、当时解为或当时解为.六、像的参数方程为.表示平面上的椭圆.十、1.在复平面除去原点外连续,在原点处不连续;2.在复平面处处连续.第二章解析函数一、选择题:1.函数在点处是()(A)解析的(B)可导的(C)不可导的(D)既不解析也不可导2.函数在点可导是在点解析的()(A)充分不必要条件(B)必要不充分条件(C)充分必要条件(D)既非充分条件也非必要条件3.下列命题中,正确的是()(A)设为实数,则(B)若是函数的奇点,则在点不可导(C)若在区域内满足柯西-黎曼方程,则在内解析(D)若在区域内解析,则在内也解析4.下列函数中,为解析函数的是()(A)(B)(C)(D)5.函数在处的导数()(A)等于0(B)等于1(C)等于(D)不存在6.若函数在复平面内处处解析,那么实常数()(A)(B)(C)(D)7.如果在单位圆内处处为零,且,那么在内()(A)(B)(C)(D)任意常数8.设函数在区域内有定义,则下列命题中,正确的是(A)若在内是一常数,则在内是一常数(B)若在内是一常数,则在内是一常数(C)若与在内解析,则在内是一常数(D)若在内是一常数,则在内是一常数9.设,则()(A)(B)(C)(D)10.的主值为()(A)(B)(C)(D)11.在复平面上()(A)无可导点(B)有可导点,但不解析(C)有可导点,且在可导点集上解析(D)处处解析12.设,则下列命题中,不正确的是()(A)在复平面上处处解析(B)以为周期(C)(D)是无界的13.设为任意实数,则()(A)无定义(B)等于1(C)是复数,其实部等于1(D)是复数,其模等于114.下列数中,为实数的是()(A)(B)(C)(D)15.设是复数,则()(A)在复平面上处处解析(B)的模为(C)一般是多值函数(D)的辐角为的辐角的倍二、填空题1.设,则2.设在区域内是解析的,如果是实常数,那么在内是3.导函数在区域内解析的充要条件为4.设,则5.若解析函数的实部,那么6.函数仅在点处可导7.设,则方程的所有根为8.复数的模为9.10.方程的全部解为三、设为的解析函数,若记,则.四、试证下列函数在平面上解析,并分别求出其导数1.2.五、设,求.六、设试证在原点满足柯西-黎曼方程,但却不可导.七、已知,试确定解析函数.八、设和为平面向量,将按逆时针方向旋转即得.如果为解析函数,则有(与分别表示沿,的方向导数).九、若函数在上半平面内解析,试证函数在下半平面内解析.十、解方程.第二章解析函数一、1.(B)2.(B)3.(D)4.(C)5.(A)6.(C)7.(C)8.(C)9.(A)10.(D)11.(A)12.(C)13.(D)14.(B)15.(C)二、填空题1.2.常数3.可微且满足4.5.或,为实常数6.7.8.9.10.四、1.2.五、,.七、.为任意实常数.十、.第三章复变函数的积分一、选择题:1.设为从原点沿至的弧段,则()(A)(B)(C)(D)2.设为不经过点与的正向简单闭曲线,则为()(A)(B)(C)(D)(A)(B)(C)都有可能3.设为负向,正向,则()(B)(C) (D)4.设为正向圆周,则()(A)(B)(C)(D)5.设为正向圆周,则()(A)(B)(C)(D)6.设,其中,则()(A)(B)(C)(D)7.设在单连通域内处处解析且不为零,为内任何一条简单闭曲线,则积分()(A)于(B)等于(C)等于(D)不能确定8.设是从到的直线段,则积分()(A)(B)(C)(D)9.设为正向圆周,则()(A)(B)(C)(D)10.设为正向圆周,则()(A)(B)(C)(D)11.设在区域内解析,为内任一条正向简单闭曲线,它的内部全属于.如果在上的值为2,那么对内任一点,()(A)等于0(B)等于1(C)等于2(D)不能确定12.下列命题中,不正确的是()(A)积分的值与半径的大小无关(B),其中为连接到的线段(C)若在区域内有,则在内存在且解析(D)若在内解析,且沿任何圆周的积分等于零,则在处解析13.设为任意实常数,那么由调和函数确定的解析函数是()(A)(B)(C)(D)14.下列命题中,正确的是()(A)设在区域内均为的共轭调和函数,则必有(B)解析函数的实部是虚部的共轭调和函数(C)若在区域内解析,则为内的调和函数(D)以调和函数为实部与虚部的函数是解析函数15.设在区域内为的共轭调和函数,则下列函数中为内解析函数的是()(A)(B)(C)(D)二、填空题1.设为沿原点到点的直线段,则2.设为正向圆周,则3.设,其中,则4.设为正向圆周,则5.设为负向圆周,则6.解析函数在圆心处的值等于它在圆周上的7.设在单连通域内连续,且对于内任何一条简单闭曲线都有,那么在内8.调和函数的共轭调和函数为9.若函数为某一解析函数的虚部,则常数10.设的共轭调和函数为,那么的共轭调和函数为三、计算积分1.,其中且;2..四、设在单连通域内解析,且满足.试证1.在内处处有;2.对于内任意一条闭曲线,都有五、设在圆域内解析,若,则.六、求积分,从而证明.七、设在复平面上处处解析且有界,对于任意给定的两个复数,试求极限并由此推证(刘维尔Liouville定理).八、设在内解析,且,试计算积分并由此得出之值.九、设是的解析函数,证明.十、若,试求解析函数.第三章复变函数的积分一、1.(D)2.(D)3.(B)4.(C)5.(B)6.(A)7.(C)8.(A)9.(A)10.(C)11.(C)12.(D)13.(D)14.(C)15.(B)二、1.22.3.04.5.6.平均值7.解析8.9.10.三、1.当时,;当时,;当时,.2..六、.七、.八、.十、(为任意实常数).答案第四章级数一、选择题:1.设,则()(A)等于(B)等于(C)等于(D)不存在2.下列级数中,条件收敛的级数为()(A)(B)(C)(D)3.下列级数中,绝对收敛的级数为()(B)(C)(D)4.若幂级数在处收敛,那么该级数在处的敛散性为()(A)绝对收敛(B)条件收敛(C)发散(D)不能确定5.设幂级数和的收敛半径分别为,则之间的关系是()(A)(B)(C)(D)6.设,则幂级数的收敛半径()(A)(B)(C)(D)7.幂级数的收敛半径()(B)(C)(D)8.幂级数在内的和函数为(A)(B)(D)(D)9.设函数的泰勒展开式为,那么幂级数的收敛半径()(A)(B)(C)(D)10.级数的收敛域是()(A)(B)(C)(D)不存在的11.函数在处的泰勒展开式为()(A)(B)(C)(D)12.函数,在处的泰勒展开式为()(A)(B)(C)(D)13.设在圆环域内的洛朗展开式为,为内绕的任一条正向简单闭曲线,那么()(A)(B)(C)(D)14.若,则双边幂级数的收敛域为()(A)(B)(C)(D)15.设函数在以原点为中心的圆环内的洛朗展开式有个,那么()(A)1(B)2(C)3(D)4二、填空题1.若幂级数在处发散,那么该级数在处的收敛性为.2.设幂级数与的收敛半径分别为和,那么与之间的关系是.3.幂级数的收敛半径4.设在区域内解析,为内的一点,为到的边界上各点的最短距离,那么当时,成立,其中.5.函数在处的泰勒展开式为.6.设幂级数的收敛半径为,那么幂级数的收敛半径为.7.双边幂级数的收敛域为.8.函数在内洛朗展开式为.9.设函数在原点的去心邻域内的洛朗展开式为,那么该洛朗级数收敛域的外半径.10.函数在内的洛朗展开式为.三、若函数在处的泰勒展开式为,则称为菲波那契(Fibonacci)数列,试确定满足的递推关系式,并明确给出的表达式.四、试证明1.2.五、设函数在圆域内解析,试证1..2.。六、设幂级数的和函数,并计算之值.七、设,则对任意的,在内。八、设在内解析的函数有泰勒展开式试证当时.九、将函数在内展开成洛朗级数.十、试证在内下列展开式成立:其中.第四章级数一、1.(C)2.(C)3.(D)4.(A)5.(D)6.(D)7.(B)8.(A)9.(C)10.(B)11.(D)12.(B)13.(B)14.(A)15.(C)二、1.发散2.3.4.或()5.6.7.8.9.10.三、,.六、,.九、.答案第五章留数一、选择题:1.函数在内的奇点个数为()(A)1(B)2(C)3(D)42.设函数与分别以为本性奇点与级极点,则为函数的()(A)可去奇点(B)本性奇点(C)级极点(D)小于级的极点3.设为函数的级极点,那么()(A)5(B)4(C)3(D)24.是函数的()(A)可去奇点(B)一级极点(C)一级零点(D)本性奇点5.是函数的()(A)可去奇点(B)一级极点(C)二级极点(D)本性奇点6.设在内解析,为正整数,那么()(A)(B)(C)(D)7.设为解析函数的级零点,那么()(A)(B)(C)(D)8.在下列函数中,的是()(B)(C)(D)9.下列命题中,正确的是()设,在点解析,为自然数,则为的级极点.如果无穷远点是函数的可去奇点,那么若为偶函数的一个孤立奇点,则若,则在内无奇点10.()(A)(B)(C)(D)11.()(A)(B)(C)(D)12.下列命题中,不正确的是()(A)若是的可去奇点或解析点,则(B)若与在解析,为的一级零点,则(C)若为的级极点,为自然数,则(D)如果无穷远点为的一级极点,则为的一级极点,并且13.设为正整数,则()(A)(B)(C)(D)14.积分()(A)(B)(C)(D)15.积分()(A)(B)(C)(D)二、填空题1.设为函数的级零点,那么.2.函数在其孤立奇点处的留数.3.设函数,则4.设为函数的级极点,那么.5.双曲正切函数在其孤立奇点处的留数为.6.设,则.7.设,则.8.积分.9.积分.10.积分.三、计算积分.四、利用留数计算积分五、利用留数计算积分六、利用留数计算下列积分:1.2.七、设为的孤立奇点,为正整数,试证为的级极点的充要条件是,其中为有限数.八、设为的孤立奇点,试证:若是奇函数,则;若是偶函数,则.九、设以为简单极点,且在处的留数为A,证明.十、若函数在上解析,当为实数时,取实数而且,表示的虚部,试证明第五章留数一、1.(D)2.(B)3.(C)4.(D)5.(B)6.(C)7.(A)8.(D)9.(C)10.(A)11.(B)12.(D)13.(A)14.(B)15.(C)二、1.2.3.4.5.6.7.8.9.10.三、.四、.五、.六、1.2..答案第六章共形映射一、选择题:1.若函数构成的映射将平面上区域缩小,那么该区域是()(A)(B)(C)(D)2.映射在处的旋转角为()(A)(B)(C)(D)3.映射在点处的伸缩率为()(A)1(B)2(C)(D)4.在映射下,区域的像为()(A)(B)(C)(D)5.下列命题中,正确的是()(A)在复平面上处处保角(此处为自然数)(B)映射在处的伸缩率为零(C)若与是同时把单位圆映射到上半平面的分式线性变换,那么(D)函数构成的映射属于第二类保角映射6.关于圆周的对称点是()(A)(B)(C)(D)7.函数将角形域映射为()(A)(B)(C)(D)8.将点分别映射为点的分式线性变换为()(B)(C)(D)9.分式线性变换把圆周映射为()(B)(D)10.分式线性变换将区域:且映射为()(A)(B)(C)(D)11.设为实数且,那么分式线性变换把上半平面映射为平面的()(A)单位圆内部(B)单位圆外部(C)上半平面(D)下半平面12.把上半平面映射成圆域且满足的分式线性变换为()(A)(B)(C)(D)13.把单位圆映射成单位圆且满足的分式线性变换为()(A)(B)(C)(D)14.把带形域映射成上半平面的一个映射可写为()(A)(B)(C)(D)15.函数将带形域映射为()(A)(B)(C)(D)二、填空题1.若函数在点解析且,那么映射在处具有
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- BIM工程师-全国《BIM应用技能资格》名师预测试卷3
- 二年级下册数学导学案
- 花园裙楼幕墙工程施工方案
- 农村电网改造升级的技术路径
- 老式钟表走时不准校正修复
- 海藻叶片形态特征与光合作用
- 新视野大学英语3第三版 大学英语视听说3答案
- 高一化学教案:专题第二单元第二课时化学反应中的热量变化(二)
- 2024高中物理第一章电场章末质量评估一含解析粤教版选修3-1
- 2024高中语文第1单元论语蚜第1课天下有道丘不与易也训练含解析新人教版选修先秦诸子蚜
- 老年肌肉衰减综合征(肌少症)-课件
- 九防突发事件应急预案
- 神经内科应急预案完整版
- 2023零售药店医保培训试题及答案篇
- UCC3895芯片内部原理解析
- 航空航天技术概论
- 脱水筛 说明书
- GB/T 9410-2008移动通信天线通用技术规范
- GB/T 13772.2-1992机织物中纱线抗滑移性测定方法模拟缝合法
- 建筑公司年度工作总结及计划(6篇)
- SVG运行与维护课件
评论
0/150
提交评论