版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
云南省临沧市2025届高三下学期5月份月考(三)数学试题理试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.“”是“,”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分又不必要条件2.已知函数(,,),将函数的图象向左平移个单位长度,得到函数的部分图象如图所示,则是的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件3.若集合,,则()A. B. C. D.4.己知抛物线的焦点为,准线为,点分别在抛物线上,且,直线交于点,,垂足为,若的面积为,则到的距离为()A. B. C.8 D.65.已知是虚数单位,则()A. B. C. D.6.如图,已知平面,,、是直线上的两点,、是平面内的两点,且,,,,.是平面上的一动点,且直线,与平面所成角相等,则二面角的余弦值的最小值是()A. B. C. D.7.已知某口袋中有3个白球和个黑球(),现从中随机取出一球,再换回一个不同颜色的球(即若取出的是白球,则放回一个黑球;若取出的是黑球,则放回一个白球),记换好球后袋中白球的个数是.若,则=()A. B.1 C. D.28.已知为虚数单位,若复数,则A. B.C. D.9.已知四棱锥中,平面,底面是边长为2的正方形,,为的中点,则异面直线与所成角的余弦值为()A. B. C. D.10.已知函数,若有2个零点,则实数的取值范围为()A. B. C. D.11.复数的虚部为()A. B. C.2 D.12.已知等式成立,则()A.0 B.5 C.7 D.13二、填空题:本题共4小题,每小题5分,共20分。13.“”是“”的__________条件.(填写“充分必要”、“充分不必要”、“必要不充分”、“既不充分也不必要”之一)14.已知在等差数列中,,,前n项和为,则________.15.过且斜率为的直线交抛物线于两点,为的焦点若的面积等于的面积的2倍,则的值为___________.16.函数的图象在处的切线与直线互相垂直,则_____.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图:在中,,,.(1)求角;(2)设为的中点,求中线的长.18.(12分)如图,设点为椭圆的右焦点,圆过且斜率为的直线交圆于两点,交椭圆于点两点,已知当时,(1)求椭圆的方程.(2)当时,求的面积.19.(12分)已知数列和满足:.(1)求证:数列为等比数列;(2)求数列的前项和.20.(12分)已知函数.(1)解不等式;(2)记函数的最大值为,若,证明:.21.(12分)已知函数.(1)当时,试求曲线在点处的切线;(2)试讨论函数的单调区间.22.(10分)已知等差数列{an}的各项均为正数,Sn为等差数列{an}的前n项和,.(1)求数列{an}的通项an;(2)设bn=an⋅3n,求数列{bn}的前n项和Tn.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.B【解析】
先求出满足的值,然后根据充分必要条件的定义判断.【详解】由得,即,,因此“”是“,”的必要不充分条件.故选:B.本题考查充分必要条件,掌握充分必要条件的定义是解题基础.解题时可根据条件与结论中参数的取值范围进行判断.2.B【解析】
先根据图象求出函数的解析式,再由平移知识得到的解析式,然后分别找出和的等价条件,即可根据充分条件,必要条件的定义求出.【详解】设,根据图象可知,,再由,取,∴.将函数的图象向右平移个单位长度,得到函数的图象,∴.,,令,则,显然,∴是的必要不充分条件.故选:B.本题主要考查利用图象求正(余)弦型函数的解析式,三角函数的图形变换,二倍角公式的应用,充分条件,必要条件的定义的应用,意在考查学生的数学运算能力和逻辑推理能力,属于中档题.3.B【解析】
根据正弦函数的性质可得集合A,由集合性质表示形式即可求得,进而可知满足.【详解】依题意,;而,故,则.故选:B.本题考查了集合关系的判断与应用,集合的包含关系与补集关系的应用,属于中档题.4.D【解析】
作,垂足为,过点N作,垂足为G,设,则,结合图形可得,,从而可求出,进而可求得,,由的面积即可求出,再结合为线段的中点,即可求出到的距离.【详解】如图所示,作,垂足为,设,由,得,则,.过点N作,垂足为G,则,,所以在中,,,所以,所以,在中,,所以,所以,,所以.解得,因为,所以为线段的中点,所以F到l的距离为.故选:D本题主要考查抛物线的几何性质及平面几何的有关知识,属于中档题.5.B【解析】
根据复数的乘法运算法则,直接计算,即可得出结果.【详解】.故选B本题主要考查复数的乘法,熟记运算法则即可,属于基础题型.6.B【解析】
为所求的二面角的平面角,由得出,求出在内的轨迹,根据轨迹的特点求出的最大值对应的余弦值【详解】,,,,同理为直线与平面所成的角,为直线与平面所成的角,又,在平面内,以为轴,以的中垂线为轴建立平面直角坐标系则,设,整理可得:在内的轨迹为为圆心,以为半径的上半圆平面平面,,为二面角的平面角,当与圆相切时,最大,取得最小值此时故选本题主要考查了二面角的平面角及其求法,方法有:定义法、三垂线定理及其逆定理、找公垂面法、射影公式、向量法等,依据题目选择方法求出结果.7.B【解析】由题意或4,则,故选B.8.B【解析】
因为,所以,故选B.9.B【解析】
由题意建立空间直角坐标系,表示出各点坐标后,利用即可得解.【详解】平面,底面是边长为2的正方形,如图建立空间直角坐标系,由题意:,,,,,为的中点,.,,,异面直线与所成角的余弦值为即为.故选:B.本题考查了空间向量的应用,考查了空间想象能力,属于基础题.10.C【解析】
令,可得,要使得有两个实数解,即和有两个交点,结合已知,即可求得答案.【详解】令,可得,要使得有两个实数解,即和有两个交点,,令,可得,当时,,函数在上单调递增;当时,,函数在上单调递减.当时,,若直线和有两个交点,则.实数的取值范围是.故选:C.本题主要考查了根据零点求参数范围,解题关键是掌握根据零点个数求参数的解法和根据导数求单调性的步骤,考查了分析能力和计算能力,属于中档题.11.D【解析】
根据复数的除法运算,化简出,即可得出虚部.【详解】解:=,故虚部为-2.故选:D.本题考查复数的除法运算和复数的概念.12.D【解析】
根据等式和特征和所求代数式的值的特征用特殊值法进行求解即可.【详解】由可知:令,得;令,得;令,得,得,,而,所以.故选:D本题考查了二项式定理的应用,考查了特殊值代入法,考查了数学运算能力.二、填空题:本题共4小题,每小题5分,共20分。13.充分不必要【解析】
由余弦的二倍角公式可得,即或,即可判断命题的关系.【详解】由,所以或,所以“”是“”的充分不必要条件.故答案为:充分不必要本题考查命题的充分条件与必要条件的判断,考查余弦的二倍角公式的应用.14.39【解析】
设等差数列公差为d,首项为,再利用基本量法列式求解公差与首项,进而求得即可.【详解】设等差数列公差为d,首项为,根据题意可得,解得,所以.故答案为:39本题考查等差数列的基本量计算以及前n项和的公式,属于基础题.15.2【解析】
联立直线与抛物线的方程,根据一元二次方程的根与系数的关系以及面积关系求解即可.【详解】如图,设,由,则,由可得,由,则,所以,得.故答案为:2此题考查了抛物线的性质,属于中档题.16.1.【解析】
求函数的导数,根据导数的几何意义结合直线垂直的直线斜率的关系建立方程关系进行求解即可.【详解】函数的图象在处的切线与直线垂直,函数的图象在的切线斜率本题正确结果:本题主要考查直线垂直的应用以及导数的几何意义,根据条件建立方程关系是解决本题的关键.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(1);(2)【解析】
(1)通过求出的值,利用正弦定理求出即可得角;(2)根据求出的值,由正弦定理求出边,最后在中由余弦定理即可得结果.【详解】(1)∵,∴.由正弦定理,即.得,∵,∴为钝角,为锐角,故.(2)∵,∴.由正弦定理得,即得.在中由余弦定理得:,∴.本题主要考查了正弦定理和余弦定理在解三角形中的应用,考查三角函数知识的运用,属于中档题.18.(1)(2)【解析】
(1)先求出圆心到直线的距离为,再根据得到,解之即得a的值,再根据c=1求出b的值得到椭圆的方程.(2)先求出,,再求得的面积.【详解】(1)因为直线过点,且斜率.所以直线的方程为,即,所以圆心到直线的距离为,又因为,圆的半径为,所以,即,解之得,或(舍去).所以,所以所示椭圆的方程为.(2)由(1)得,椭圆的右准线方程为,离心率,则点到右准线的距离为,所以,即,把代入椭圆方程得,,因为直线的斜率,所以,因为直线经过和,所以直线的方程为,联立方程组得,解得或,所以,所以的面积.本题主要考查直线和圆、椭圆的位置关系,考查椭圆的方程的求法,考查三角形面积的计算,意在考查学生对这些知识的掌握水平和分析推理计算能力.19.(1)见解析(2)【解析】
(1)根据题目所给递推关系式得到,由此证得数列为等比数列.(2)由(1)求得数列的通项公式,判断出,由此利用裂项求和法求得数列的前项和.【详解】(1)所以数列是以3为首项,以3为公比的等比数列.(2)由(1)知,∴为常数列,且,∴,∴∴本小题主要考查根据递推关系式证明等比数列,考查裂项求和法,属于中档题.20.(1);(2)证明见解析【解析】
(1)将函数整理为分段函数形式可得,进而分类讨论求解不等式即可;(2)先利用绝对值不等式的性质得到的最大值为3,再利用均值定理证明即可.【详解】(1)①当时,恒成立,;②当时,,即,;③当时,显然不成立,不合题意;综上所述,不等式的解集为.(2)由(1)知,于是由基本不等式可得(当且仅当时取等号)(当且仅当时取等号)(当且仅当时取等号)上述三式相加可得(当且仅当时取等号),,故得证.本题考查解绝对值不等式和利用均值定理证明不等式,考查绝对值不等式的最值的应用,解题关键是掌握分类讨论解决带绝对值不等式的方法,考查了分析能力和计算能力,属于中档题.21.(1);(2)见解析【解析】
(1)对函数进行求导,可以求出曲线在点处的切线,利用直线的斜截式方程可以求出曲线的切线方程;(2)对函数进行求导,对实数进行分类讨论,可以求出函数的单调区间.【详解】(1)当时,函数定义域为,,所以切线方程为;(2)当时,函数定义域为,在上单调递增当时,恒成立,函数定义域为,又在单调递增,单调递减,单调递增当时,函数定义域为,在单调递增,单调递减,单调递增当时,设的两个根为且,由韦达定理易知两根均为正根,且,所以函数的定义域为,又对称轴,且,在单调递增,单调递减,单调递增本题考查了曲线切线方程的求法,考查了利用函数的导数讨论函数的单调性问题,考查了分类思想.22.(1).(2)【解析】
(1)先设等差数列{an}的公差为d(d>0),然后根据等差数列的通项公式及已知条件可列出关于d的方程,解出d的值,即可得到数列{an}的通项an;(2)先根据第(1)题的结果计算出数列{bn}的通项公式,然后运用错位相减法计算前n项和Tn.【详解】(1)由题意,设等差数列{an}的公差为d(d>0),则a4a5=(1+3d)(1+4d)=11,整理,得12d2+7d﹣10=0,解得d(舍去),或d,∴an=1(n﹣1),n∈N*.(2)由(1)知,bn=an⋅3n•3n=(2n+1)•3n﹣1,∴Tn=
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 施工总包合同文本
- 厨房日用品采购合同
- 借款还款合同范本
- 医院药品采购合同的价格调整
- 物流电子商务合作合同
- 苏州市物业管理合同评析
- 房屋买卖合同中介服务的发展趋势
- 钢筋分项工程分包合同
- 借款还款合同协议书
- 服务外包合同的转让条件
- 汽车技术人员奖惩制度范本
- 统计造假弄虚作假自查范文(通用5篇)
- 互联网背景下小学生心理健康教育策略 论文
- 传统节日文化在幼儿园课程中的应用研究 论文
- 《机械设计基础A》机械电子 教学大纲
- 2022宁夏共享集团公司校园招聘48人上岸笔试历年难、易错点考题附带参考答案与详解
- 基因扩增实验室常用仪器使用课件
- 2023年营养师、营养指导员专业技能及理论知识考试题库(附含答案)
- 肺功能万里行考试内容
- 男生青春期教育讲座-课件
- 《银行运营档案管理系统业务管理规定》制定说明
评论
0/150
提交评论