版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届海南省海口市华侨中学高三五月调研测试数学试题试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.复数的共轭复数为()A. B. C. D.2.已知正项数列满足:,设,当最小时,的值为()A. B. C. D.3.已知,满足约束条件,则的最大值为A. B. C. D.4.已知,,则()A. B. C. D.5.用电脑每次可以从区间内自动生成一个实数,且每次生成每个实数都是等可能性的.若用该电脑连续生成3个实数,则这3个实数都小于的概率为()A. B. C. D.6.已知函数的最小正周期为,为了得到函数的图象,只要将的图象()A.向左平移个单位长度 B.向右平移个单位长度C.向左平移个单位长度 D.向右平移个单位长度7.“学习强国”学习平台是由中宣部主管,以深入学习宣传新时代中国特色社会主义思想为主要内容,立足全体党员、面向全社会的优质平台,现日益成为老百姓了解国家动态、紧跟时代脉搏的热门。该款软件主要设有“阅读文章”、“视听学习”两个学习模块和“每日答题”、“每周答题”、“专项答题”、“挑战答题”四个答题模块。某人在学习过程中,“阅读文章”不能放首位,四个答题板块中有且仅有三个答题板块相邻的学习方法有()A.60 B.192 C.240 D.4328.在平行四边形中,若则()A. B. C. D.9.已知平行于轴的直线分别交曲线于两点,则的最小值为()A. B. C. D.10.已知实数、满足不等式组,则的最大值为()A. B. C. D.11.设函数恰有两个极值点,则实数的取值范围是()A. B.C. D.12.已知数列中,,若对于任意的,不等式恒成立,则实数的取值范围为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.函数的最大值与最小正周期相同,则在上的单调递增区间为______.14.正方形的边长为2,圆内切于正方形,为圆的一条动直径,点为正方形边界上任一点,则的取值范围是______.15.记Sk=1k+2k+3k+……+nk,当k=1,2,3,……时,观察下列等式:S1n2n,S2n3n2n,S3n4n3n2,……S5=An6n5n4+Bn2,…可以推测,A﹣B=_____.16.在平面直角坐标系中,双曲线(,)的左顶点为A,右焦点为F,过F作x轴的垂线交双曲线于点P,Q.若为直角三角形,则该双曲线的离心率是______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,在直角梯形中,,,,为的中点,沿将折起,使得点到点位置,且,为的中点,是上的动点(与点,不重合).(Ⅰ)证明:平面平面垂直;(Ⅱ)是否存在点,使得二面角的余弦值?若存在,确定点位置;若不存在,说明理由.18.(12分)在三棱锥中,是边长为的正三角形,平面平面,,M、N分别为、的中点.(1)证明:;(2)求三棱锥的体积.19.(12分)传染病的流行必须具备的三个基本环节是:传染源、传播途径和人群易感性.三个环节必须同时存在,方能构成传染病流行.呼吸道飞沫和密切接触传播是新冠状病毒的主要传播途径,为了有效防控新冠状病毒的流行,人们出行都应该佩戴口罩.某地区已经出现了新冠状病毒的感染病人,为了掌握该地区居民的防控意识和防控情况,用分层抽样的方法从全体居民中抽出一个容量为100的样本,统计样本中每个人出行是否会佩戴口罩的情况,得到下面列联表:戴口罩不戴口罩青年人5010中老年人2020(1)能否有的把握认为是否会佩戴口罩出行的行为与年龄有关?(2)用样本估计总体,若从该地区出行不戴口罩的居民中随机抽取5人,求恰好有2人是青年人的概率.附:0.1000.0500.0100.0012.7063.8416.63510.82820.(12分)如图,在四棱锥中,平面,底面是矩形,,,分别是,的中点.(Ⅰ)求证:平面;(Ⅱ)设,求三棱锥的体积.21.(12分)如图,在四面体中,.(1)求证:平面平面;(2)若,二面角为,求异面直线与所成角的余弦值.22.(10分)如图,三棱台中,侧面与侧面是全等的梯形,若,且.(Ⅰ)若,,证明:∥平面;(Ⅱ)若二面角为,求平面与平面所成的锐二面角的余弦值.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.D【解析】
直接相乘,得,由共轭复数的性质即可得结果【详解】∵∴其共轭复数为.故选:D熟悉复数的四则运算以及共轭复数的性质.2.B【解析】
由得,即,所以得,利用基本不等式求出最小值,得到,再由递推公式求出.【详解】由得,即,,当且仅当时取得最小值,此时.故选:B本题主要考查了数列中的最值问题,递推公式的应用,基本不等式求最值,考查了学生的运算求解能力.3.D【解析】
作出不等式组对应的平面区域,利用目标函数的几何意义,利用数形结合即可得到结论.【详解】作出不等式组表示的平面区域如下图中阴影部分所示,等价于,作直线,向上平移,易知当直线经过点时最大,所以,故选D.本题主要考查线性规划的应用,利用目标函数的几何意义,结合数形结合的数学思想是解决此类问题的基本方法.4.D【解析】
分别解出集合然后求并集.【详解】解:,故选:D考查集合的并集运算,基础题.5.C【解析】
由几何概型的概率计算,知每次生成一个实数小于1的概率为,结合独立事件发生的概率计算即可.【详解】∵每次生成一个实数小于1的概率为.∴这3个实数都小于1的概率为.故选:C.本题考查独立事件同时发生的概率,考查学生基本的计算能力,是一道容易题.6.A【解析】
由的最小正周期是,得,即,因此它的图象向左平移个单位可得到的图象.故选A.考点:函数的图象与性质.三角函数图象变换方法:7.C【解析】
四个答题板块中选三个捆绑在一起,和另外一个答题板块用插入法.注意按“阅读文章”分类.【详解】四个答题板块中选三个捆绑在一起,和另外一个答题板块用插入法,由于“阅读文章”不能放首位,因此不同的方法数为.故选:C.本题考查排列组合的应用,考查捆绑法和插入法求解排列问题.对相邻问题用捆绑法,不相邻问题用插入法是解决这类问题的常用方法.8.C【解析】
由,,利用平面向量的数量积运算,先求得利用平行四边形的性质可得结果.【详解】如图所示,
平行四边形中,,
,,,
因为,
所以
,
,所以,故选C.本题主要考查向量的几何运算以及平面向量数量积的运算法则,属于中档题.向量的运算有两种方法:(1)平行四边形法则(平行四边形的对角线分别是两向量的和与差);(2)三角形法则(两箭头间向量是差,箭头与箭尾间向量是和).9.A【解析】
设直线为,用表示出,,求出,令,利用导数求出单调区间和极小值、最小值,即可求出的最小值.【详解】解:设直线为,则,,而满足,那么设,则,函数在上单调递减,在上单调递增,所以故选:.本题考查导数知识的运用:求单调区间和极值、最值,考查化简整理的运算能力,正确求导确定函数的最小值是关键,属于中档题.10.A【解析】
画出不等式组所表示的平面区域,结合图形确定目标函数的最优解,代入即可求解,得到答案.【详解】画出不等式组所表示平面区域,如图所示,由目标函数,化为直线,当直线过点A时,此时直线在y轴上的截距最大,目标函数取得最大值,又由,解得,所以目标函数的最大值为,故选A.本题主要考查简单线性规划求解目标函数的最值问题.其中解答中正确画出不等式组表示的可行域,利用“一画、二移、三求”,确定目标函数的最优解是解答的关键,着重考查了数形结合思想,及推理与计算能力,属于基础题.11.C【解析】
恰有两个极值点,则恰有两个不同的解,求出可确定是它的一个解,另一个解由方程确定,令通过导数判断函数值域求出方程有一个不是1的解时t应满足的条件.【详解】由题意知函数的定义域为,.因为恰有两个极值点,所以恰有两个不同的解,显然是它的一个解,另一个解由方程确定,且这个解不等于1.令,则,所以函数在上单调递增,从而,且.所以,当且时,恰有两个极值点,即实数的取值范围是.故选:C本题考查利用导数研究函数的单调性与极值,函数与方程的应用,属于中档题.12.B【解析】
先根据题意,对原式进行化简可得,然后利用累加法求得,然后不等式恒成立转化为恒成立,再利用函数性质解不等式即可得出答案.【详解】由题,即由累加法可得:即对于任意的,不等式恒成立即令可得且即可得或故选B本题主要考查了数列的通项的求法以及函数的性质的运用,属于综合性较强的题目,解题的关键是能够由递推数列求出通项公式和后面的转化函数,属于难题.二、填空题:本题共4小题,每小题5分,共20分。13.【解析】
利用三角函数的辅助角公式进行化简,求出函数的解析式,结合三角函数的单调性进行求解即可.【详解】∵,则函数的最大值为2,周期,的最大值与最小正周期相同,,得,则,当时,,则当时,得,即函数在,上的单调递增区间为,故答案为:.本题考查三角函数的性质、单调区间,利用辅助角公式求出函数的解析式是解决本题的关键,同时要注意单调区间为定义域的一个子区间.14.【解析】
根据向量关系表示,只需求出的取值范围即可得解.【详解】由题可得:,故答案为:此题考查求平面向量数量积的取值范围,涉及基本运算,关键在于恰当地对向量进行转换,便于计算解题.15.【解析】
观察知各等式右边各项的系数和为1,最高次项的系数为该项次数的倒数,据此计算得到答案.【详解】根据所给的已知等式得到:各等式右边各项的系数和为1,最高次项的系数为该项次数的倒数,∴A,A1,解得B,所以A﹣B.故答案为:.本题考查了归纳推理,意在考查学生的推理能力.16.2【解析】
根据是等腰直角三角形,且为中点可得,再由双曲线的性质可得,解出即得.【详解】由题,设点,由,解得,即线段,为直角三角形,,且,又为双曲线右焦点,过点,且轴,,可得,,整理得:,即,又,.故答案为:本题考查双曲线的简单性质,是常考题型.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(Ⅰ)见解析(Ⅱ)存在,此时为的中点.【解析】
(Ⅰ)证明平面,得到平面平面,故平面平面,平面,得到答案.(Ⅱ)假设存在点满足题意,过作于,平面,过作于,连接,则,过作于,连接,是二面角的平面角,设,,计算得到答案.【详解】(Ⅰ)∵,,,∴平面.又平面,∴平面平面,而平面,,∴平面平面,由,知,可知平面,又平面,∴平面平面.(Ⅱ)假设存在点满足题意,过作于,由知,易证平面,所以平面,过作于,连接,则(三垂线定理),即是二面角的平面角,不妨设,则,在中,设(),由得,即,得,∴,依题意知,即,解得,此时为的中点.综上知,存在点,使得二面角的余弦值,此时为的中点.本题考查了面面垂直,根据二面角确定点的位置,意在考查学生的空间想象能力和计算能力,也可以建立空间直角坐标系解得答案.18.(1)证明见解析;(2).【解析】
(1)取中点,连接,,证明平面,由线面垂直的性质可得;(2)由,即可求得三棱锥的体积.【详解】解:(1)证明:取中点D,连接,.因为,,所以且,因为,平面,平面,所以平面.又平面,所以;(2)解:因为平面,平面,所以平面平面,过N作于E,则平面,因为平面平面,,平面平面,平面,所以平面,又因为平面,所以,由于,所以所以,所以.本题考查线面垂直,考查三棱锥体积的计算,解题的关键是掌握线面垂直的判定与性质,属于中档题.19.(1)有的把握认为是否戴口罩出行的行为与年龄有关.(2)【解析】
(1)根据列联表和独立性检验的公式计算出观测值,从而由参考数据作出判断.(2)因为样本中出行不戴口罩的居民有30人,其中年轻人有10人,用样本估计总体,则出行不戴口罩的年轻人的概率为,是老年人的概率为.根据独立重复事件的概率公式即可求得结果.【详解】(1)由题意可知,有的把握认为是否戴口罩出行的行为与年龄有关.(2)由样本估计总体,出行不戴口罩的年轻人的概率为,是老年人的概率为.人未戴口罩,恰有2人是青年人的概率.本题主要考查独立性检验及独立重复事件的概率求法,难度一般.20.(Ⅰ)见解析(Ⅱ)【解析】
(Ⅰ)取中点,连,,根据平行四边形,可得,进而证得平面平面,利用面面垂直的性质,得平面,又由,即可得到平面.(Ⅱ)根据三棱锥的体积公式,利用等积法,即可求解.【详解】(Ⅰ)取中点,连,,由,可得,可得是平行四边形,则,又平面,∴平面平面,∵平面,平面,∴平面平面,∵,是中点,则,而平面平面,而,∴平面.(Ⅱ)根据三棱锥的体积公式,得.本题主要考查了空间中线面位置关系的判定与证明,以及利用“等体积法”求解三棱锥的体积,其中解答中熟记线面位置关系的判定定理和性质定理,以及合理利用“等体积法”求解是解答的关键,着重考查了推理与论证能力,属于基础题.21.(1)证明见解析(2)【解析】
(1)取中点连接,得,可得,可证,可得,进而平面,即可证明结论;(2)设分别为边的中点,连,可得,,可得(或补角)是异面直线与所成的角,,可得,为二面角的平面角,即,设,求解,即可得出结论.【详解】(1)证明:
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论