




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
§4.7解三角形应用举例一、选择题1.在某次测量中,在A处测得同一平面方向的B点的仰角是50°,且到A的距离为2,C点的俯角为70°,且到A的距离为3,则B、C间的距离为()A.eq\r(16)B.eq\r(17)C.eq\r(18)D.eq\r(19)解析:因∠BAC=120°,AB=2,AC=3.∴BC2=AB2+AC2-2AB·ACcos∠BAC=4+9-2×2×3×cos120°=19.∴BC=eq\r(19).答案:D2.如图所示,为了测量某障碍物两侧A,B间的距离,给定下列四组数据,不能确定A,B间距离的是().A.α,a,b B.α,β,aC.a,b,γ D.α,β,b解析选项B中由正弦定理可求b,再由余弦定理可确定AB.选项C中可由余弦定理确定AB.选项D同B类似,故选A.答案A3.某人向正东方向走xkm后,向右转150°,然后朝新方向走3km,结果他离出发点恰好是eq\r(3)km,那么x的值为().A.eq\r(3)B.2eq\r(3)C.eq\r(3)或2eq\r(3)D.3解析如图所示,设此人从A出发,则AB=x,BC=3,AC=eq\r(3),∠ABC=30°,由余弦定理得(eq\r(3))2=x2+32-2x·3·cos30°,整理得x2-3eq\r(3)x+6=0,解得x=eq\r(3)或2eq\r(3).答案C4.如图,设A、B两点在河的两岸,一测量者在A的同侧,在所在的河岸边选定一点C,测出AC的距离为50m,∠ACB=45°,∠CAB=105°后,就可以计算出A、B两点的距离为()A.50eq\r(2)mB.50eq\r(3)mC.25eq\r(2)mD.eq\f(25\r(2),2)m解析由题意,得B=30°.由正弦定理,得eq\f(AB,sin∠ACB)=eq\f(AC,sinB),∴AB=eq\f(AC·sin∠ACB,sinB)=eq\f(50×\f(\r(2),2),\f(1,2))=50eq\r(2)(m).答案A5.两座灯塔A和B与海洋观察站C的距离都等于akm,灯塔A在观察站C的北偏东20°,灯塔B在观察站C的南偏东40°,则灯塔A与灯塔B的距离为()A.akmB.eq\r(2)akmC.2akmD.eq\r(3)akm解析依题意得∠ACB=120°,由余弦定理,得cos120°=eq\f(AC2+BC2-AB2,2AC·BC).∴AB2=AC2+BC2-2AC·BC=a2+a2-2a2×eq\b\lc\(\rc\)(\a\vs4\al\co1(-\f(1,2)))=3a2,∴AB=eq\r(3)a,故选D.答案D6.据新华社报道,强台风“珍珠”在广东饶平登陆.台风中心最大风力达到12级以上,大风降雨给灾区带来严重的灾害,不少大树被大风折断.某路边一树干被台风吹断后,折成与地面成45°角,树干也倾斜为与地面成75°角,树干底部与树尖着地处相距20米,则折断点与树干底部的距离是().A.eq\f(20\r(6),3)米B.10eq\r(6)米C.eq\f(10\r(6),3)米D.20eq\r(2)米解析如图所示,设树干底部为O,树尖着地处为B,折断点为A,则∠ABO=45°,∠AOB=75°,∴∠OAB=60°.由正弦定理知,eq\f(AO,sin45°)=eq\f(20,sin60°),∴AO=eq\f(20\r(6),3)(米).答案A7.如图,飞机的航线和山顶在同一个铅垂面内,若飞机的高度为海拔18km,速度为1000km/h,飞行员先看到山顶的俯角为30°,经过1min后又看到山顶的俯角为75°,则山顶的海拔高度为(精确到0.1km)().A.11.4B.6.6C.6.5D.5.6解析AB=1000×1000×eq\f(1,60)=eq\f(50000,3)(m),∴BC=eq\f(AB,sin45°)·sin30°=eq\f(50000,3\r(2))(m).∴航线离山顶h=eq\f(50000,3\r(2))×sin75°≈11.4(km).∴山高为18-11.4=6.6(km).答案B二、填空题8.一船以每小时15km的速度向东航行,船在A处看到一个灯塔M在北偏东60°方向,行驶4h后,船到B处,看到这个灯塔在北偏东15°方向,这时船与灯塔的距离为________km.解析:如图所示,依题意有AB=15×4=60,∠MAB=30°,∠AMB=45°,在△AMB中,由正弦定理得eq\f(60,sin45°)=eq\f(BM,sin30°),解得BM=30eq\r(2).答案:30eq\r(2)9.如图,为测得河对岸塔AB的高,先在河岸上选一点C,使C在塔底B的正东方向上,测得点A的仰角为60°,再由点C沿北偏东15°方向走10米到位置D,测得∠BDC=45°,则塔AB的高是________米.解析在△BCD中,CD=10,∠BDC=45°,∠BCD=15°+90°=105°,∠DBC=30°,eq\f(BC,sin45°)=eq\f(CD,sin30°),BC=eq\f(CDsin45°,sin30°)=10eq\r(2).在Rt△ABC中,tan60°=eq\f(AB,BC),AB=BCtan60°=10eq\r(6)(米).答案10eq\r(6)10.2010年11月12日广州亚运会上举行升旗仪式.如图,在坡度为15°的观礼台上,某一列座位所在直线AB与旗杆所在直线MN共面,在该列的第一个座位A和最后一个座位B测得旗杆顶端N的仰角分别为60°和30°,且座位A、B的距离为10eq\r(6)米,则旗杆的高度为________米.解析由题可知∠BAN=105°,∠BNA=30°,由正弦定理得eq\f(AN,sin45°)=eq\f(10\r(6),sin30°),解得AN=20eq\r(3)(米),在Rt△AMN中,MN=20eq\r(3)sin60°=30(米).故旗杆的高度为30米.答案3011.如图,在日本地震灾区的搜救现场,一条搜救狗从A处沿正北方向行进xm到达B处发现一个生命迹象,然后向右转105°,进行10m到达C处发现另一生命迹象,这时它向右转135°后继续前行回到出发点,那么x=________.解析由题知,∠CBA=75°,∠BCA=45°,∴∠BAC=180°-75°-45°=60°,∴eq\f(x,sin45°)=eq\f(10,sin60°).∴x=eq\f(10\r(6),3)m.答案eq\f(10\r(6),3)m12.如图,一船在海上自西向东航行,在A处测得某岛M的方位角为北偏东α角,前进m海里后在B处测得该岛的方位角为北偏东β角,已知该岛周围n海里范围内(包括边界)有暗礁,现该船继续东行,当α与β满足条件________时,该船没有触礁危险.解析由题可知,在△ABM中,根据正弦定理得eq\f(BM,sin90°-α)=eq\f(m,sinα-β),解得BM=eq\f(mcosα,sinα-β),要使该船没有触礁危险需满足BMsin(90°-β)=eq\f(mcosαcosβ,sinα-β)>n,所以当α与β的关系满足mcosαcosβ>nsin(α-β)时,该船没有触礁危险.答案mcosαcosβ>nsin(α-β)三、解答题13.隔河看两目标A与B,但不能到达,在岸边先选取相距eq\r(3)千米的C,D两点,同时,测得∠ACB=75°,∠BCD=45°,∠ADC=30°,∠ADB=45°(A,B,C,D在同一平面内),求两目标A,B之间的距离.解析如图所示,在△ACD中,∵∠ADC=30°,∠ACD=120°,∴∠CAD=30°,AC=CD=eq\r(3)(千米),在△BDC中,∠CBD=180°-45°-75°=60°.由正弦定理得,BC=eq\f(\r(3)sin75°,sin60°)=eq\f(\r(6)+\r(2),2)(千米).在△ABC中,由余弦定理,可得AB2=AC2+BC2-2AC·BCcos∠BCA,即AB2=(eq\r(3))2+eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(\r(6)+\r(2),2)))2-2eq\r(3)·eq\f(\r(6)+\r(2),2)cos75°=5.∴AB=eq\r(5)(千米).所以两目标A、B间的距离为eq\r(5)千米.14.如图,渔船甲位于岛屿A的南偏西60°方向的B处,且与岛屿A相距12海里,渔船乙以10海里/时的速度从岛屿A出发沿正北方向航行,若渔船甲同时从B处出发沿北偏东α的方向追赶渔船乙,刚好用2小时追上,此时到达C处.(1)求渔船甲的速度;(2)求sinα的值.解析(1)依题意知,∠BAC=120°,AB=12(海里),AC=10×2=20(海里),∠BCA=α,在△ABC中,由余弦定理,得BC2=AB2+AC2-2AB·AC·cos∠BAC=122+202-2×12×20×cos120°=784.解得BC=28(海里).所以渔船甲的速度为eq\f(BC,2)=14海里/时.(2)在△ABC中,因为AB=12(海里),∠BAC=120°,BC=28(海里),∠BCA=α,由正弦定理,得eq\f(AB,sinα)=eq\f(BC,sin120°).即sinα=eq\f(ABsin120°,BC)=eq\f(12×\f(\r(3),2),28)=eq\f(3\r(3),14).15.如图所示,甲船由A岛出发向北偏东45°的方向作匀速直线航行,速度为15eq\r(2)nmile/h,在甲船从A岛出发的同时,乙船从A岛正南40nmile处的B岛出发,朝北偏东θeq\b\lc\(\rc\)(\a\vs4\al\co1(tanθ=\f(1,2)))的方向作匀速直线航行,速度为mnmile/h.(1)若两船能相遇,求m.(2)当m=10eq\r(5)时,求两船出发后多长时间距离最近,最近距离为多少nmile?解析(1)设t小时后,两船在M处相遇,由tanθ=eq\f(1,2),得sinθ=eq\f(\r(5),5),cosθ=eq\f(2\r(5),5),所以sin∠AMB=sin(45°-θ)=eq\f(\r(10),10).由正弦定理,eq\f(AM,sinθ)=eq\f(AB,sin∠AMB),∴AM=40eq\r(2),同理得BM=40eq\r(5).∴t=eq\f(40\r(2),15\r(2))=eq\f(8,3),m=eq\f(40\r(5),\f(8,3))=15eq\r(5).(2)以A为原点,BA所在直线为y轴建立如图所示的平面直角坐标系,设在t时刻甲、乙两船分别在P(x1,y1),Q(x2,y2)处,则|AP|=15eq\r(2)t,|BQ|=10eq\r(5)t.由任意角三角函数的定义,可得eq\b\lc\{\rc\(\a\vs4\al\co1(x1=15\r(2)tcos45°=15t,,y1=15\r(2)tsin45°=15t,))即点P的坐标是(15t,15t),eq\b\lc\{\rc\(\a\vs4\al\co1(x2=10\r(5)tsinθ=10t,,y2=10\r(5)tcosθ-40=20t-40,))即点Q的坐标是(10t,20t-40),∴|PQ|=eq\r(-5t2+5t-402)=eq\r(50t2-400t+1600)=eq\r(50t-42+800)≥20eq\r(2),当且仅当t=4时,|PQ|取得最小值20eq\r(2),即两船出发4小时时,距离最近,最近距离为20eq\r(2)nmile.16.某港口O要将一件重要物品用小艇送到一艘正在航行的轮船上.在小艇出发时,轮船位于港口O北偏西30°且与该港口相距20海里的A处,并正以30海里/时的航行速度沿正东方向匀速行驶.假设该小艇沿直线方向以v海里/时的航行速度匀速行驶,经过t小时与轮船相遇.(1)若希望相遇时小艇的航行距离最小,则小艇航行速度的大小应为多少?(2)假设小艇的最高航行速度只能达到30海里/时,试设计航行方案(即确定航行方向和航行速度的大小),使得小艇能以最短时间与轮船相遇,并说明理由.思路分析第(1)问建立航行距离与时间的函数关系式;第(2)问建立速度与时间的函数关系式.解析(1)设相遇时小艇航行的距离为S海里,则S=eq\r(900t2+400-2·30t·20·cos90°-30°)=eq\r(900t2-600t+400)=eq\r(900\b\lc\(\rc\)(\a\vs4\al\co1(t-\f(1,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 房屋抵押借款合同协议
- 代办手续服务合同
- 外立面装修工程合同
- 房屋买卖委托人合同
- 人合租办公室协议合同
- 驻厂合同协议模板
- 网恋合同协议模板
- 加工定制合同协议
- 合同转移协议范文
- 火星时代课程合同协议
- 2025年中储粮集团江苏分公司招聘(73人)笔试参考题库附带答案详解
- 2025年上海市高考英语热点复习:阅读理解词义猜测题
- 2025年共青团入团考试测试题库及答案
- 2025年宣传岗笔试题库及答案
- 2024年漳州市医院招聘考试真题
- 售后技术服务年终总结
- 房屋建筑工程竣工验收技术资料统一用表(2024 版)
- 磷酸铁及磷酸铁锂异物防控管理
- (新版)水利水电工程施工企业“三类人员”安全生产考核题库-(单选多选题库)
- 热镀锌钢管栅栏施工方案
- 部编版小学二年级下册语文全册教案
评论
0/150
提交评论