版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.如图,已知正方形ABCD,点E是BC边的中点,DE与AC相交于点F,连接BF,下列结论:;;;,其中正确的是()A. B. C. D.2.下列计算①②③④⑤,其中任意抽取一个,运算结果正确的概率是()A. B. C. D.3.在同一时刻,身高1.5米的小红在阳光下的影长2米,则影长为6米的大树的高是()A.4.5米 B.8米 C.5米 D.5.5米4.若x=5是方程的一个根,则m的值是()A.-5 B.5 C.10 D.-105.某商店以每件60元的价格购进一批货物,零售价为每件80元时,可以卖出100件(按相关规定零售价不能超过80元).如果零售价在80元的基础上每降价1元,可以多卖出10件,当零售价在80元的基础上降价x元时,能获得2160元的利润,根据题意,可列方程为()A.x(100+10x)=2160 B.(20﹣x)(100+10x)=2160C.(20+x)(100+10x)=2160 D.(20﹣x)(100﹣10x)=21606.若∽,相似比为,则与的周长比为()A. B. C. D.7.有三张正面分别写有数字-1,1,2的卡片,它们背面完全相同,现将这三张卡片背面朝上洗匀后随机抽取一张,以其正面数字作为a的值,然后再从剩余的两张卡片随机抽一张,以其正面的数字作为b的值,则点(a,b)在第二象限的概率为()A. B. C. D.8.在同一坐标系中一次函数和二次函数的图象可能为()A. B. C. D.9.下列四张印有汽车品牌标志图案的卡片中,是中心对称图形的卡片是()A. B. C. D.10.抛物线的对称轴为直线,与轴的一个交点坐标为,其部分图象如图所示.下列叙述中:①;②关于的方程的两个根是;③;④;⑤当时,随增大而增大.正确的个数是()A.4 B.3 C.2 D.1二、填空题(每小题3分,共24分)11.某车间生产的零件不合格的概率为.如果每天从他们生产的零件中任取10个做试验,那么在大量的重复试验中,平均来说,天会查出1个次品.12.如图,竖直放置的一个铝合金窗框由矩形和弧形两部分组成,AB=m,AD=2m,弧CD所对的圆心角为∠COD=120°.现将窗框绕点B顺时针旋转横放在水平的地面上,这一过程中,窗框上的点到地面的最大高度为__m.13.一个盒子里有完全相同的三个小球,球上分别标有数字,,,随机摸出一个小球(不放回),其数字为,再随机摸出另一个小球其数字记为,则满足关于的方程有实数根的概率是___________.14.如图,抛物线y=﹣x2+mx+2m2(m>0)与x轴交于A,B两点,点A在点B的左边,C是抛物线上一个动点(点C与点A,B不重合),D是OC的中点,连结BD并延长,交AC于点E,则的值是_____________.15.如图,在四边形ABCD中,AD∥BC∥EF,EF分别与AB,AC,CD相交于点E,M,F,若EM:BC=2:5,则FC:CD的值是_____.16.若实数、满足,则以、的值为边长的等腰三角形的周长为.17.二次函数y=﹣x2+bx+c的部分图象如图所示,由图象可知,不等式﹣x2+bx+c<0的解集为______.18.分解因式:.三、解答题(共66分)19.(10分)如图示,是的直径,点是半圆上的一动点(不与,重合),弦平分,过点作交射线于点.(1)求证:与相切:(2)若,,求长;(3)若,长记为,长记为,求与之间的函数关系式,并求出的最大值.20.(6分)先化简,再求值:,其中x满足x2﹣4x+3=1.21.(6分)某文物古迹遗址每周都吸引大量中外游客前来参观,如果游客过多,对文物古迹会产生不良影响,但同时考虑到文物的修缮和保存费用的问题,还要保证有一定的门票收入,因此遗址的管理部门采取了升、降门票价格的方法来控制参观人数.在实施过程中发现:每周参观人数y(人)与票价x(元)之间恰好构成一次函数关系:y=﹣500x+1.在这样的情况下,如果要确保每周有40000元的门票收入,那么门票价格应定为多少元?22.(8分)某公司投入研发费用80万元(80万元只计入第一年成本),成功研发出一种产品.公司按订单生产(产量=销售量),第一年该产品正式投产后,生产成本为6元/件.此产品年销售量y(万件)与售价x(元/件)之间满足函数关系式y=﹣x+1.(1)求这种产品第一年的利润W1(万元)与售价x(元/件)满足的函数关系式;(2)该产品第一年的利润为20万元,那么该产品第一年的售价是多少?(3)第二年,该公司将第一年的利润20万元(20万元只计入第二年成本)再次投入研发,使产品的生产成本降为5元/件.为保持市场占有率,公司规定第二年产品售价不超过第一年的售价,另外受产能限制,销售量无法超过12万件.请计算该公司第二年的利润W2至少为多少万元.23.(8分)如图,直径为AB的⊙O交的两条直角边BC,CD于点E,F,且,连接BF.(1)求证CD为⊙O的切线;(2)当CF=1且∠D=30°时,求⊙O的半径.24.(8分)解方程:x2﹣6x+8=1.25.(10分)箱子里有4瓶牛奶,其中有一瓶是过期的.现从这4瓶牛奶中不放回地任意抽取2瓶.(1)请用树状图或列表法把上述所有等可能的结果表示出来;(2)求抽出的2瓶牛奶中恰好抽到过期牛奶的概率.26.(10分)如图,一般捕鱼船在A处发出求救信号,位于A处正西方向的B处有一艘救援艇决定前去数援,但两船之间有大片暗礁,无法直线到达.救援艇决定马上调整方向,先向北偏东方以每小时30海里的速度航行,同时捕鱼船向正北低速航行.30分钟后,捕鱼船到达距离A处海里的D处,此时救援艇在C处测得D处在南偏东的方向上.求C、D两点的距离;捕鱼船继续低速向北航行,救援艇决定再次调整航向,沿CE方向前去救援,并且捕鱼船和救援艇同达时到E处,若两船航速不变,求的正弦值.参考数据:,,
参考答案一、选择题(每小题3分,共30分)1、C【解析】试题解析:①和的底分别相等,高也相等,所以它们的面积也相等,故正确.②和的底分别相等,高也相等,所以它们的面积也相等,并不是倍的关系.故错误.③由于是的中点,所以和的相似比为,所以它们的面积之比为.故错误.④和的底相等,高和则是的关系,所以它们的面积之比为.故正确.综上所述,符合题意的有①和④.故选C.2、A【解析】根据计算结果和概率公式求解即可.【详解】运算结果正确的有⑤,则运算结果正确的概率是,故选:A.【点睛】考核知识点:求概率.熟记公式是关键.3、A【解析】根据同一时刻的两个物体,影子,经过物体顶部的太阳光线三者构成的两个直角三角形相似即可得.【详解】如图,由题意可得:由相似三角形的性质得:,即解得:(米)故选:A.【点睛】本题考查了相似三角形的性质,理解题意,将问题转化为利用相似三角形的性质求解是解题关键.4、D【分析】先把x=5代入方程得到关于m的方程,然后解此方程即可.【详解】解:把x=5代入方程得到25-3×5+m=0,
解得m=-1.
故选:D.【点睛】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.5、B【分析】根据第一句已知条件可得该货物单件利润为元,根据第二句话的已知条件,降价几个1元,就可以多卖出几个10件,可得降价后利润为元,数量为件,两者相乘得2160元,列方程即可.【详解】解:由题意得,当售价在80元基础上降价元时,.【点睛】本题主要考查的是一元二次方程应用题里的利润问题,理解掌握其中的数量关系列出方程是解答这类应用题的关键.6、B【分析】根据相似三角形的性质:周长之比等于相似比解答即可.【详解】解:∵∽,相似比为,∴与的周长比为.故选:B.【点睛】本题考查的是相似三角形的性质,属于应知应会题型,熟练掌握相似三角形的性质是解题关键.7、B【详解】试题分析:根据题意,画出树状图如下:一共有6种情况,在第二象限的点有(﹣1,1)(﹣1,2)共2个,所以,P=.故选B.考点:列表法与树状图法求概率.8、A【详解】根据二次函数的解析式可得:二次函数图像经过坐标原点,则排除B和C,A选项中一次函数a>0,b<0,二次函数a>0,b<0,符合题意.故选A.【点睛】本题考查了(1)、一次函数的图像;(2)、二次函数的图像9、B【解析】根据中心对称图形的概念:如果一个图形绕某一个点旋转180°后能与它自身重合,我们就把这个图形叫做中心对称图形,逐一判断即可.【详解】A.不是中心对称图形,故错误;B.是中心对称图形,故正确;C.不是中心对称图形,故错误;D.不是中心对称图形,故错误;故选:B.【点睛】本题主要考查中心对称图形,掌握中心对称图形的概念是解题的关键.10、B【分析】由抛物线的对称轴是,可知系数之间的关系,由题意,与轴的一个交点坐标为,根据抛物线的对称性,求得抛物线与轴的一个交点坐标为,从而可判断抛物线与轴有两个不同的交点,进而可转化求一元二次方程根的判别式,当时,代入解析式,可求得函数值,即可判断其的值是正数或负数.【详解】抛物线的对称轴是;③正确,与轴的一个交点坐标为抛物线与与轴的另一个交点坐标为关于的方程的两个根是;②正确,当x=1时,y=;④正确抛物线与轴有两个不同的交点,则①错误;当时,随增大而减小当时,随增大而增大,⑤错误;②③④正确,①⑤错误故选:B.【点睛】本题考查二次函数图象的基本性质:对称性、增减性、函数值的特殊性、二次函数与一元二次方程的综合运用,是常见考点,难度适中,熟练掌握二次函数图象基本性质是解题关键.二、填空题(每小题3分,共24分)11、1.【解析】试题分析:根据题意首先得出抽取10个零件需要1天,进而得出答案.解:∵某车间生产的零件不合格的概率为,每天从他们生产的零件中任取10个做试验,∴抽取10个零件需要1天,则1天会查出1个次品.故答案为1.考点:概率的意义.12、()【分析】连接OB,过O作OH⊥BC于H,过O作ON⊥CD于N,根据已知条件求出OC和OB的长即可.【详解】连接OB,过O作OH⊥BC于H,过O作ON⊥CD于N,∵∠COD=120°,CO=DO,∴∠OCD=∠ODC=30°,∵ON⊥CO,∴CN=DN=CD=AB=m,∴ON=CN=m,OC=1m,∵ON⊥BC,∴四边形OHCN是矩形,∴CH=ON=m,OH=CN=m,∴BH=BC-CH=m,∴OB==m,∴在这一过程中,窗框上的点到地面的最大高度为(+1)m,故答案为:(+1).【点睛】本题考查了垂径定理,矩形的性质和判定,勾股定理,掌握知识点是解题关键.13、.【解析】解:画树状图得:∵共有6种等可能的结果,满足关于x的方程x2+px+q=0有实数根的有4种情况,∴满足关于x的方程x2+px+q=0有实数根的概率是:.故答案为.14、【分析】过点O作OH∥AC交BE于点H,根据A、B的坐标可得OA=m,OB=2m,AB=3m,证明OH=CE,将根据,可得出答案.【详解】解:过点O作OH∥AC交BE于点H,令y=x2+mx+2m2=0,∴x1=-m,x2=2m,∴A(-m,0)、B(2m,0),∴OA=m,OB=2m,AB=3m,∵D是OC的中点,∴CD=OD,∵OH∥AC,∴,∴OH=CE,∴,∴,故答案为:.【点睛】本题主要考查了抛物线与x轴的交点问题,解题的关键是过点O作OH∥AC交BE于点H,此题有一定的难度.15、3【解析】首先得出△AEM∽△ABC,△CFM∽△CDA,进而利用相似三角形的性质求出即可.【详解】∵AD∥BC∥EF,∴△AEM∽△ABC,△CFM∽△CDA,∵EM:BC=2:5,∴AMAC设AM=2x,则AC=5x,故MC=3x,∴CMAC故答案为:35【点睛】此题主要考查了相似三角形的判定与性质,得出AMAC16、1.【解析】先根据非负数的性质列式求出x、y的值,再分4是腰长与底边两种情况讨论求解:根据题意得,x﹣4=0,y﹣2=0,解得x=4,y=2.①4是腰长时,三角形的三边分别为4、4、2,∵4+4=2,∴不能组成三角形,②4是底边时,三角形的三边分别为4、2、2,能组成三角形,周长=4+2+2=1.所以,三角形的周长为1.17、x<−1或x>5.【分析】先利用抛物线的对称性得到抛物线与x轴的另一个交点坐标为(-1,0),然后写出抛物线在x轴下方所对应的自变量的范围即可.【详解】抛物线的对称轴为直线x=2,而抛物线与x轴的一个交点坐标为(5,0),所以抛物线与x轴的另一个交点坐标为(−1,0),所以不等式−x2+bx+c<0的解集为x<−1或x>5.故答案为x<−1或x>5.考点:二次函数图象的性质18、.【解析】要将一个多项式分解因式的一般步骤是首先看各项有没有公因式,若有公因式,则把它提取出来,之后再观察是否是完全平方公式或平方差公式,若是就考虑用公式法继续分解因式.因此,先提取公因式后继续应用平方差公式分解即可:.考点:提公因式法和应用公式法因式分解.三、解答题(共66分)19、(1)详见解析;(2)4;(3)【分析】(1)首先连接,通过半径和角平分线的性质进行等角转换,得出,进而得出,即可得证;(2)首先连接,得出,进而得出,再根据勾股定理得出DE;(3)首先连接,过点作,得出,再得,进而得出,然后构建二次函数,即可得出其最大值.【详解】(1)证明:连接∵∴∵平分∴∴∴∵∴又∵是的半径∴与相切(2)解:连接∵AB为直径∴∠ADB=90°∵∴∴∴∴中(3)连接,过点作于∵,DE⊥AE,AD=AD∴∴,DE=DG∴∴∴即:∴∴根据二次函数知识可知:当时,【点睛】此题主要考查直线与圆的位置关系、相似三角形的判定与性质以及全等三角形的判定与性质与二次函数的综合应用,熟练掌握,即可解题.20、化简结果是,求值结果是:.【分析】先根据分式混合运算的法则把原式进行化简,再求出x的值代入进行计算即可.【详解】解:原式====,∵x满足x2﹣4x+3=1,∴(x-3)(x-1)=1,∴x1=3,x2=1,当x=3时,原式=﹣=;当x=1时,分母等于1,原式无意义.∴分式的值为.故答案为:化简结果是,求值结果是:.【点睛】本题主要考查分式的化简求值,解题的关键是掌握分式的混合运算顺序和运算法则及解一元二次方程的能力.21、门票价格应是20元/人.【分析】根据参观人数×票价=40000元,即可求出每周应限定参观人数以及门票价格.【详解】根据确保每周4万元的门票收入,得xy=40000即x(-500x+1)=40000x2-24x+80=0解得x1=20,x2=4把x1=20,x2=4分别代入y=-500x+1中得y1=2000,y2=10000因为控制参观人数,所以取x=20,答:门票价格应是20元/人.【点睛】考查了一元二次方程的应用,解题的关键是能够根据题意列出方程,难度不大.22、(1)W1=﹣x2+32x﹣2;(2)该产品第一年的售价是16元;(3)该公司第二年的利润W2至少为18万元.【解析】(1)根据总利润=每件利润×销售量﹣投资成本,列出式子即可;(2)构建方程即可解决问题;(3)根据题意求出自变量的取值范围,再根据二次函数,利用而学会设的性质即可解决问题.【详解】(1)W1=(x﹣6)(﹣x+1)﹣80=﹣x2+32x﹣2.(2)由题意:20=﹣x2+32x﹣2.解得:x=16,答:该产品第一年的售价是16元.(3)由题意:7≤x≤16,W2=(x﹣5)(﹣x+1)﹣20=﹣x2+31x﹣150,∵7≤x≤16,∴x=7时,W2有最小值,最小值=18(万元),答:该公司第二年的利润W2至少为18万元.【点睛】本题考查二次函数的应用、一元二次方程的应用等知识,解题的关键是理解题意,学会构建方程或函数解决问题.23、(1)证明见解析;(2).【分析】(1)连接OF,只要证明OF∥BC,即可推出OF⊥CD,由此即可解决问题;(2)连接AF,利用∠D=30°,求出∠CBF=∠DBF=30°,得出BF=2,在利用勾股定理得出AB的长度,从而求出⊙O的半径.【详解】(1)连接OF,∵,∴∠CBF=∠FBA,∵OF=OB,∴∠FBO=∠OFB,∵点A、O、B三点共线,∴∠CBF=∠OFB,∴BC∥OF,∴∠OFC+∠C=180°,∵∠C=90°,∴∠OFC=90°,即OF⊥DC,∴CD为⊙O的切线;(2)连接AF,∵AB为直径,∴∠AFB=90°,∵∠D=30°,∴∠CBD=60°,∵,∴∠CBF=∠DBF=∠CBD=30°,在,CF=1,∠CBF=30°,∴BF=2CF=2,在,∠ABF=30°,BF=2,∴AF=AB,∴AB2=(AB)2+BF2,即AB2=4,∴,⊙O的半径为;【点睛】本题考查切线的判定、直角三角形30度角的性质、勾股定理,直径对的圆周角为90°
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- KPI绩效考核表格大全适合大小公司-20220426102406
- 新能源绿色项目投资协议
- 服装生产合作协议
- 物流运输安全管理与监控制度
- 云计算平台搭建投资合同
- 物流行业绿色配送模式创新实践
- 二零二五年度城市综合体改造包清工及公共空间设计合同2篇
- 2024年装修泥瓦工分包合同版B版
- 2024版权授权许可合同
- 计算机跨考专业课程设计
- DG-TJ 08-2367-2021 既有建筑外立面整治设计标准
- 公文流转单(标准模版)
- 深入浅出Oracle EBS之OAF学习笔记-Oracle EBS技术文档
- XXX大中型公司报价管理办法
- 四年级计算题大全(列竖式计算,可打印)
- 年会主持词:企业年会主持词
- LS 8010-2014植物油库设计规范
- GB/T 9119-2000平面、突面板式平焊钢制管法兰
- 办公用品供货项目实施方案
- 牛津译林版(2019) 必修第三册 Unit 4 Scientists Who Changed the World Extended reading 课件
- 销售价格管理制度(5篇)
评论
0/150
提交评论