河北省保定市第十三中学2022-2023学年数学九年级第一学期期末联考模拟试题含解析_第1页
河北省保定市第十三中学2022-2023学年数学九年级第一学期期末联考模拟试题含解析_第2页
河北省保定市第十三中学2022-2023学年数学九年级第一学期期末联考模拟试题含解析_第3页
河北省保定市第十三中学2022-2023学年数学九年级第一学期期末联考模拟试题含解析_第4页
河北省保定市第十三中学2022-2023学年数学九年级第一学期期末联考模拟试题含解析_第5页
已阅读5页,还剩18页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年九上数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.下列命题正确的是()A.长度为5cm、2cm和3cm的三条线段可以组成三角形B.的平方根是±4C.是实数,点一定在第一象限D.两条直线被第三条直线所截,同位角相等2.如图,在△ABC中,AD⊥BC交BC于点D,AD=BD,若AB=,tanC=,则BC=()A.8 B. C.7 D.3.如图,正方形的边长是3,,连接、交于点,并分别与边、交于点、,连接,下列结论:①;②;③;④当时,.正确结论的个数为()A.1个 B.2个 C.3个 D.4个4.如图,中,.将绕点顺时针旋转得到,边与边交于点(不在上),则的度数为()A. B. C. D.5.如图,已知正五边形内接于,连结,则的度数是()A. B. C. D.6.的值为()A.2 B. C. D.7.如图,矩形AOBC,点C在反比例的图象上,若,则的长是()A.1 B.2 C.3 D.48.半径为10的⊙O和直线l上一点A,且OA=10,则直线l与⊙O的位置关系是()A.相切 B.相交 C.相离 D.相切或相交9.五张完全相同的卡片上,分别写有数字1,2,3,4,5,现从中随机抽取一张,抽到的卡片上所写数字小于3的概率是()A. B. C. D.10.已知△ABC≌△DEF,∠A=60°,∠E=40°,则∠F的度数为()A.40 B.60 C.80 D.10011.在△ABC中,若tanA=1,sinB=,你认为最确切的判断是()A.△ABC是等腰三角形 B.△ABC是等腰直角三角形C.△ABC是直角三角形 D.△ABC是一般锐角三角形12.已知△ABC∽△DEF,∠A=85°;∠F=50°,那么cosB的值是()A.1 B. C. D.二、填空题(每题4分,共24分)13.某小区2019年的绿化面积为3000m2,计划2021年的绿化面积为4320m2,如果每年绿化面积的增长率相同,设增长率为x,则可列方程为______.14.有一条抛物线,三位学生分别说出了它的一些性质:甲说:对称轴是直线;乙说:与轴的两个交点的距离为6;丙说:顶点与轴的交点围成的三角形面积等于9,则这条抛物线解析式的顶点式是______.15.是方程的解,则的值__________.16.如图,小明从路灯下A处,向前走了5米到达D处,行走过程中,他的影子将会(只填序号)________.①越来越长,②越来越短,③长度不变.在D处发现自己在地面上的影子长DE是2米,如果小明的身高为1.7米,那么路灯离地面的高度AB是________米.17.某同学用描点法y=ax2+bx+c的图象时,列出了表:x…﹣2﹣1012…y…﹣11﹣21﹣2﹣5…由于粗心,他算错了其中一个y值,则这个错误的y值是_______.18.在Rt△ABC中,,,,则的值等于__.三、解答题(共78分)19.(8分)如图,在矩形ABCD中,AB=6,BC=8,点E,F分别在边BC,AB上,AF=BE=2,连结DE,DF,动点M在EF上从点E向终点F匀速运动,同时,动点N在射线CD上从点C沿CD方向匀速运动,当点M运动到EF的中点时,点N恰好与点D重合,点M到达终点时,M,N同时停止运动.(1)求EF的长.(2)设CN=x,EM=y,求y关于x的函数表达式,并写出自变量x的取值范围.(3)连结MN,当MN与△DEF的一边平行时,求CN的长.20.(8分)工艺商场按标价销售某种工艺品时,每件可获利45元;并且进价50件工艺品与销售40件工艺品的价钱相同.(1)该工艺品每件的进价、标价分别是多少元?(2)若每件工艺品按(1)中求得的进价进货,标价售出,工艺商场每天可售出该工艺品100件.若每件工艺品降价1元,则每天可多售出该工艺品4件.问每件工艺品降价多少元出售,每天获得的利润最大?获得的最大利润是多少元?21.(8分)如图,王华同学在晚上由路灯AC走向路灯BD,当他走到点P时,发现身后他影子的顶部刚好接触到路灯AC的底部,当他向前再步行12m到达Q点时,发现身前他影子的顶部刚好接触到路灯BD的底部.已知王华同学的身高是1.6m,两个路灯的高度都是9.6m(1)求两个路灯之间的距离;(2)当王华同学走到路灯BD处时,他在路灯AC下的影子长是多少?22.(10分)如图,是线段上--动点,以为直径作半圆,过点作交半圆于点,连接.已知,设两点间的距离为,的面积为.(当点与点或点重合时,的值为)请根据学习函数的经验,对函数随自变量的变化而变化的规律进行探究.(注:本题所有数值均保留一位小数)通过画图、测量、计算,得到了与的几组值,如下表:补全表格中的数值:;;.根据表中数值,继续描出中剩余的三个点,画出该函数的图象并写出这个函数的一条性质;结合函数图象,直接写出当的面积等于时,的长度约为____.23.(10分)根据要求完成下列题目:

(1)图中有块小正方体;(2)请在下面方格纸中分别画出它的主视图,左视图和俯视图.24.(10分)已知:△ABC是等腰直角三角形,∠BAC=90°,将△ABC绕点C顺时针方向旋转得到△A′B′C,记旋转角为α,当90°<α<180°时,作A′D⊥AC,垂足为D,A′D与B′C交于点E.(1)如图1,当∠CA′D=15°时,作∠A′EC的平分线EF交BC于点F.①写出旋转角α的度数;②求证:EA′+EC=EF;(2)如图2,在(1)的条件下,设P是直线A′D上的一个动点,连接PA,PF,若AB=,求线段PA+PF的最小值.(结果保留根号)25.(12分)如图,已知与⊙交于两点,过圆心且与⊙交于两点,平分.(1)求证:∽(2)作交于,若,,求的值.26.解方程(1)x2-6x-7=0;(2)(2x-1)2=1.

参考答案一、选择题(每题4分,共48分)1、C【分析】根据三角形三边关系、平方根的性质、象限的性质、平行线的性质进行判断即可.【详解】A.长度为5cm、2cm和3cm的三条线段不可以组成三角形,错误;B.的平方根是±2,错误;C.是实数,点一定在第一象限,正确;D.两条平行线被第三条直线所截,同位角相等,错误;故答案为:C.【点睛】本题考查了判断命题真假的问题,掌握三角形三边关系、平方根的性质、象限的性质、平行线的性质是解题的关键.2、C【分析】证出△ABD是等腰直角三角形,得出AD=BD=AB=4,由三角函数定义求出CD=3,即可得出答案.【详解】解:交于点,,是等腰直角三角形,,,,;故选:.【点睛】本题考查了解直角三角形、等腰直角三角形的性质以及三角函数定义;熟练掌握等腰直角三角形的性质和三角函数定义是解题的关键.3、D【分析】由四边形ABCD是正方形,得到AD=BC=AB,∠DAB=∠ABC=90°,即可证明△DAP≌△ABQ,根据全等三角形的性质得到∠P=∠Q,根据余角的性质得到AQ⊥DP;故①正确;根据相似三角形的性质得到AO2=OD•OP,故②正确;根据△CQF≌△BPE,得到S△CQF=S△BPE,根据△DAP≌△ABQ,得到S△DAP=S△ABQ,即可得到S△AOD=S四边形OECF;故③正确;根据相似三角形的性质得到BE的长,进而求得QE的长,证明△QOE∽△POA,根据相似三角形对应边成比例即可判断④正确,即可得到结论.【详解】∵四边形ABCD是正方形,∴AD=BC=AB,∠DAB=∠ABC=90°.∵BP=CQ,∴AP=BQ.在△DAP与△ABQ中,∵,∴△DAP≌△ABQ,∴∠P=∠Q.∵∠Q+∠QAB=90°,∴∠P+∠QAB=90°,∴∠AOP=90°,∴AQ⊥DP;故①正确;∵∠DOA=∠AOP=90°,∠ADO+∠P=∠ADO+∠DAO=90°,∴∠DAO=∠P,∴△DAO∽△APO,∴,∴AO2=OD•OP.故②正确;在△CQF与△BPE中,∵,∴△CQF≌△BPE,∴S△CQF=S△BPE.∵△DAP≌△ABQ,∴S△DAP=S△ABQ,∴S△AOD=S四边形OECF;故③正确;∵BP=1,AB=3,∴AP=1.∵∠P=∠P,∠EBP=∠DAP=90°,∴△PBE∽△PAD,∴,∴BE,∴QE,∵∠Q=∠P,∠QOE=∠POA=90°,∴△QOE∽△POA,∴,∴,故④正确.故选:D.【点睛】本题考查了相似三角形的判定和性质,全等三角形的判定和性质,正方形的性质,熟练掌握全等三角形的判定和性质是解答本题的关键.4、D【分析】根据旋转的性质可得∠B′=∠B=30°,∠BOB′=52°,再由三角形外角的性质即可求得的度数.【详解】∵△A′OB′是由△AOB绕点O顺时针旋转得到,∠B=30°,∴∠B′=∠B=30°,∵△AOB绕点O顺时针旋转52°,∴∠BOB′=52°,∵∠A′CO是△B′OC的外角,∴∠A′CO=∠B′+∠BOB′=30°+52°=82°.故选D.【点睛】本题主要考查了旋转的性质,熟知旋转的性质是解决问题的关键.5、C【分析】根据多边形内角和定理、正五边形的性质求出∠ABC、CD=CB,根据等腰三角形的性质求出∠CBD,计算即可.【详解】∵五边形为正五边形∴∵∴∴故选C.【点睛】本题考查的是正多边形和圆、多边形的内角和定理,掌握正多边形和圆的关系、多边形内角和等于(n-2)×180°是解题的关键.6、D【解析】根据特殊角的三角函数值及负指数幂的定义求解即可.【详解】故选:D【点睛】本题考查了特殊角的三角函数值及负指数幂的定义,比较简单,掌握定义仔细计算即可.7、B【分析】根据OB的长度即为点C的横坐标,代入反比例函数的解析式中即可求出点C的纵坐标,即BC的长度,再根据矩形的性质即可求出OA.【详解】解:∵∴点C的横坐标为1将点C的横坐标代入中,解得y=2∴BC=2∵四边形AOBC是矩形∴OA=BC=2故选B.【点睛】此题考查的是根据反比例函数解析式求点的坐标和矩形的性质,掌握根据反比例函数解析式求点的坐标和矩形的性质是解决此题的关键.8、D【分析】根据直线和圆的位置关系来判断.【详解】设圆心到直线l的距离为d,则d≤10,当d=10时,d=r,直线与圆相切;当r<10时,d<r,直线与圆相交,所以直线与圆相切或相交.故选D点睛:本题考查了直线与圆的位置关系,①直线和圆相离时,d>r;②直线和圆相交时,d<r;③直线和圆相切时,d=r(d为圆心到直线的距离),反之也成立.9、B【分析】用小于3的卡片数除以卡片的总数量可得答案.【详解】由题意可知一共有5种结果,其中数字小于3的结果有抽到1和2两种,所以.故选:B.【点睛】本题主要考查概率公式,解题的关键是掌握随机事件A的概率P(A)=事件A可能出现的结果数÷所有可能出现的结果数.10、C【分析】根据全等三角形对应角相等可得∠B=∠E=40°,∠F=∠C,然后利用三角形内角和定理计算出∠C的度数,进而可得答案.【详解】解:∵△ABC≌△DEF,∴∠B=∠E=40°,∠F=∠C,∵∠A=60°,∴∠C=180°-60°-40°=80°,∴∠F=80°,故选:C.【点睛】此题主要考查了全等三角形的性质,关键是掌握全等三角形的对应角相等.11、B【分析】试题分析:由tanA=1,sinB=结合特殊角的锐角三角函数值可得∠A、∠B的度数,即可判断△ABC的形状.【详解】∵tanA=1,sinB=∴∠A=45°,∠B=45°∴△ABC是等腰直角三角形故选B.考点:特殊角的锐角三角函数值点评:本题是特殊角的锐角三角函数值的基础应用题,在中考中比较常见,一般以选择题、填空题形式出现,难度一般.12、C【分析】由题意首先根据相似三角形求得∠B的度数,然后根据特殊角的三角函数值确定正确的选项即可.【详解】解:△ABC∽△DEF,∠A=85°,∠F=50°,∴∠C=∠F=50°,∴∠B=180°-∠A-∠C=180°-85°-50°=45°,∴cosB=cos45°=.故选:C.【点睛】本题主要考查相似三角形的性质以及三角函数相关,解题的关键是熟练掌握相似三角形的对应角相等.二、填空题(每题4分,共24分)13、3000(1+x)2=1【分析】设增长率为x,则2010年绿化面积为3000(1+x)m2,则2021年的绿化面积为3000(1+x)(1+x)m2,然后可得方程.【详解】解:设增长率为x,由题意得:

3000(1+x)2=1,

故答案为:3000(1+x)2=1.【点睛】本题考查了由实际问题抽象出一元二次方程,关键是正确理解题意,找出题目中的等量关系.14、,【分析】根据对称轴是直线x=2,与x轴的两个交点距离为6,可求出与x轴的两个交点的坐标为(-1,0),(5,0);再根据顶点与x轴的交点围成的三角形面积等于9,可得顶点的纵坐标为±1,然后利用顶点式求得抛物线的解析式即可.【详解】解:∵对称轴是直线x=2,与x轴的两个交点距离为6,∴抛物线与x轴的两个交点的坐标为(-1,0),(5,0),设顶点坐标为(2,y),∵顶点与x轴的交点围成的三角形面积等于9,∴,∴y=1或y=-1,∴顶点坐标为(2,1)或(2,-1),设函数解析式为y=a(x-2)2+1或y=a(x-2)2-1;把点(5,0)代入y=a(x-2)2+1得a=-;把点(5,0)代入y=a(x-2)2-1得a=;∴满足上述全部条件的一条抛物线的解析式为y=-(x-2)2+1或y=(x-2)2-1.故答案为:,.【点睛】此题考查了二次函数的图像与性质,待定系数法求函数解析式.解题的关键是理解题意,采用待定系数法求解析式,若给了顶点,注意采用顶点式简单.15、【分析】先根据是方程的解求出的值,再进行计算即可得到答案.【详解】解:∵是方程的解,∴,∴,∴,∴,故答案为:.【点睛】本题主要考查了一元二次方程的解,解题时,逆用一元二次方程的定义易得出所求式子的值,在解题时要重视解题思路的逆向分析.16、①;5.95.【解析】试题解析:小明从路灯下A处,向前走了5米到达D处,行走过程中,他的影子将会越来越长;∵CD∥AB,∴△ECD∽△EBA,∴,即,∴AB=5.95(m).考点:中心投影.17、﹣1.【解析】根据关于对称轴对称的自变量对应的函数值相等,可得答案.解:由函数图象关于对称轴对称,得(﹣1,﹣2),(0,1),(1,2)在函数图象上,把(﹣1,﹣2),(0,1),(1,﹣2)代入函数解析式,得,解得,,函数解析式为y=﹣3x2+1x=2时y=﹣11,故答案为﹣1.“点睛”本题考查了二次函数图象,利用函数图象关于对称轴对称是解题关键.18、【分析】首先由勾股定理求出另一直角边AC的长度,再利用锐角三角函数的定义求解.【详解】∵在Rt△ABC中,∠C=90°,AB=10,BC=8,

∴,

∴,故答案为:.【点睛】本题主要考查了锐角三角函数的定义:在直角三角形中,锐角的余弦为邻边比斜边.三、解答题(共78分)19、(1)EF=2;(2)y=x(0≤x≤1);(3)满足条件的CN的值为或1.【分析】(1)在Rt△BEF中,利用勾股定理即可解决问题.(2)根据速度比相等构建关系式解决问题即可.(3)分两种情形如图3﹣1中,当MN∥DF,延长FE交DC的延长线于H.如图3﹣2中,当MN∥DE,分别利用平行线分线段成比例定理构建方程解决问题即可.【详解】解:(1)∵四边形ABCD是矩形,∴∠B=90°,AB=CD=6,AD=BC=8,∵AF=BE=2,∴BF=6﹣2=4,∴EF===2.(2)由题意:=,∴=,∴y=x(0≤x≤1).(3)如图3﹣1中,延长FE交DC的延长线于H.∵△EFB∽△EHC,∴==,∴==,∴EH=6,CH=1,当MN∥DF时,=,∴=,∵y=x,解得x=,如图3﹣2中,当MN∥DE时,=,∴=,∵y=x,解得x=1,综上所述,满足条件的CN的值为或1.【点睛】本题属于四边形综合题,考查了矩形的性质,相似三角形的判定和性质,平行线分线段成比例定理等知识,解题的关键是学会利用参数构建方程解决问题,属于中考常考题型.20、(1)进价为180元,标价为1元,(2)当降价为10元时,获得最大利润为4900元.【分析】(1)设工艺品每件的进价为x元,则根据题意可知标价为(x+45)元,根据进价50件工艺品与销售40件工艺品的价钱相同,列一元一次方程求解即可;(2)设每件应降价a元出售,每天获得的利润为w元,根据题意可得w和a的函数关系,利用函数的性质求解即可.【详解】设每件工艺品的进价为x元,标价为(x+45)元,根据题意,得:50x=40(x+45),解得x=180,x+45=1.答:该工艺品每件的进价180元,标价1元.(2)设每件应降价a元出售,每天获得的利润为w元.则w=(45-a)(100+4a)=-4(a-10)2+4900,∴当a=10时,w最大=4900元.【点睛】本题考查了二次函数的性质在实际生活中的应用.最大销售利润的问题常利用函数的增减性来解答,吃透题意,确定变量,建立函数模型是解题的关键.21、(1)18;(2)3.6【分析】(1)依题意得到△APM∽△ABD,得到再由它可以求出AB;(2)设王华走到路灯BD处头的顶部为E,连接CE并延长交AB的延长线于点F则BF即为此时他在路灯AC的影子长,容易知道△EBF∽△CAF,再利用它们对应边成比例求出现在的影子.【详解】解:(1)由对称性可知AP=BQ,设AP=BQ=xm,∵MP∥BD,∴△APM∽△ABD,∴,∴=,解得x=3,∴AB=2x+12=18(m),即两个路灯之间的距离为18米(2)设王华走到路灯BD处头的顶部为E,连接CE并延长交AB的延长线于点F,则BF即为此时他在路灯AC下的影子长,设BF=ym,∵BE∥AC,∴△FEB∽△FCA,∴,即=,解得y=3.6,当王华同学走到路灯BD处时,他在路灯AC下的影子长3.6米.【点睛】此题主要考查相似三角形的应用,两个问题都主要利用了相似三角形的性质:对应边成比例.22、(1)3.1,9.3,7.3;(2)见解析;(3)或.【分析】D(1)如图1,当x=1.5时,点C在C处,x=2.0时,点C在C1处,此时,D'C'=DC,则,同理可求b、c;(2)依据表格数据描点即可;(3)从图象可以得出答案.【详解】解:如图当x=1.5时,点C在C处,x=2.0时,点C在C1处∴D'C'=DC∴同理可得:b=9.3,c=7.3∴(允许合理的误差存在)如图由函数图像可知,当时,随增大而增大,当时,随增大而减小;当时,的最大值为.由函数图像可知,或【点睛】本题考查的是二次函数综合应用,确定未知点数据、再描点、准确画出函数图像是解答本题的关键.23、6,根据三视图的基本画法,画出其基本三视图【分析】试题分析:小正方形的数=3+2+1=6

考点:简单图形三视图的画法点评:三视图的图形画法是常考知识点,需要考生在熟练把握的基础上画出各种图形的三视图【详解】24、(1)①105°,②见解析;(2)【分析】(1)①解直角三角形求出∠A′CD即可解决问题,②连接A′F,设EF交CA′于点O,在EF时截取EM=EC,连接CM.首先证明△CFA′是等边三角形,再证明△FCM≌△A′CE(SAS),即可解决问题.(2)如图2中,连接A′F,PB′,AB′,作B′M⊥AC交AC的延长线于M.证明△A′EF≌△A′EB′,推出EF=EB′,推出B′,F关于A′E对称,推出PF=PB′,推出PA+PF=PA+PB′≥AB′,求出AB′即可解决问题.【详解】①解:由∠CA′D=15°,可知∠A′CD=90°-15°=75°,所以∠A′CA=180°-75°=105°即旋转角α为105°.②证明:连接A′F,设EF交CA′于点O.在EF时截取EM=EC,连接CM.∵∠CED=∠A′CE+∠CA′E=45°+15°=60°,∴∠CEA′=120°,∵FE平分∠CEA′,∴∠CEF=∠FEA′=60°,∵∠FCO=180°﹣45

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论