版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.如图,在扇形纸片AOB中,OA=10,ÐAOB=36°,OB在直线l上.将此扇形沿l按顺时针方向旋转(旋转过程中无滑动),当OA落在l上时,停止旋转.则点O所经过的路线长为()A.12π B.11π C.10π D.10π+52.小明利用计算机列出表格对一元二次方程进行估根如表:那么方程的一个近似根是()A. B. C. D.3.一元二次方程的解是()A. B. C., D.,4.从甲、乙、丙、丁四人中选一人参加诗词大会比赛,经过三轮初赛,他们的平均成绩都是86分,方差如下表,你认为派谁去参赛更合适()选手甲乙丙丁方差1.52.63.53.68A.甲 B.乙 C.丙 D.丁5.若半径为5cm的一段弧长等于半径为2cm的圆的周长,则这段弧所对的圆心角为()A.144° B.132° C.126° D.108°6.对于反比例函数,下列说法错误的是()A.它的图像在第一、三象限B.它的函数值y随x的增大而减小C.点P为图像上的任意一点,过点P作PA⊥x轴于点A.△POA的面积是D.若点A(-1,)和点B(,)在这个函数图像上,则<7.如图,、两点在双曲线上,分别经过点、两点向、轴作垂线段,已知,则()A.6 B.5 C.4 D.38.已知点是线段的一个黄金分割点,则的值为()A. B. C. D.9.如图,是⊙的直径,弦⊥于点,,则()A. B. C. D.10.下列各选项的事件中,发生的可能性大小相等的是()A.小明去某路口,碰到红灯,黄灯和绿灯B.掷一枚图钉,落地后钉尖“朝上”和“朝下”C.小亮在沿着Rt△ABC三边行走他出现在AB,AC与BC边上D.小红掷一枚均匀的骰子,朝上的点数为“偶数”和“奇数”二、填空题(每小题3分,共24分)11.如图,⊙O的半径为6cm,直线AB是⊙O的切线,切点为点B,弦BC∥AO,若∠A=30°,则劣弧的长为cm.12.某种商品每件进价为10元,调查表明:在某段时间内若以每件x元(10≤x≤20且x为整数)出售,可卖出(20﹣x)件,若使利润最大,则每件商品的售价应为_____元.13.写出经过点(0,0),(﹣2,0)的一个二次函数的解析式_____(写一个即可).14.如图,将一张矩形纸片ABCD沿着对角线BD向上折叠,顶点C落到点E处,BE交AD于点F.过点D作DG∥BE,交BC于点G,连接FG交BD于点O.若AB=6,AD=8,则DG的长为_____.15.如图,要测量池塘两岸相对的A,B两点间的距离,可以在池塘外选一点C,连接AC,BC,分别取AC,BC的中点D,E,测得DE=50m,则AB的长是_______m.16.如图,某测量小组为了测量山BC的高度,在地面A处测得山顶B的仰角45°,然后沿着坡度为1:的坡面AD走了200米到D处,此时在D处测得山顶B的仰角为60°,则山高BC=_____米(结果保留根号).17.已知二次函数的图象与x轴有交点,则k的取值范围是__________18.已知p,q都是正整数,方程7x2﹣px+2009q=0的两个根都是质数,则p+q=_____.三、解答题(共66分)19.(10分)某商店经销一种学生用双肩包,已知这种双肩包的成本价为每个30元,市场调查发现,这种双肩包每天的销售量(个)与y销售单价x(元)有如下关系:,设这种双肩包每天的销售利润为w元.(1)这种双肩包销售单价定为多少元时,每天的销售利润最大?最大利润是多少元?(2)如果物价部门规定这种双肩包的销售单价不高于42元,该商店销售这种双肩包每天要获得200元的销售利润,销售单价应定为多少元?20.(6分)如图,一次函数y=kx+b与反比例函数y=的图象在第一象限交于A,B两点,B点的坐标为(3,2),连接OA,OB,过B作BD⊥y轴,垂足为D,交OA于C,若OC=CA.(1)求一次函数和反比例函数的表达式;(2)求△AOB的面积.21.(6分)某水果商场经销一种高档水果,原价每千克50元,连续两次降价后每千克32元,若每每次下降的百分率相同.(1)求每次下降的百分率;(2)若每千克盈利10元,每天可售出500千克,经市场调查发现,在进货价不变的情况下,商场决定采取适当的涨价措施,若每千克涨价1元,日销售量将减少20千克,现该商场要保证每天盈利6000元,且要尽快减少库存,那么每千克应涨价多少元?22.(8分)如图1,过原点的抛物线与轴交于另一点,抛物线顶点的坐标为,其对称轴交轴于点.(1)求抛物线的解析式;(2)如图2,点为抛物线上位于第一象限内且在对称轴右侧的一个动点,求使面积最大时点的坐标;(3)在对称轴上是否存在点,使得点关于直线的对称点满足以点、、、为顶点的四边形为菱形.若存在,请求出点的坐标;若不存在,请说明理由.23.(8分)如图以的一边为直径作⊙,⊙与边的交点恰好为的中点,过点作⊙的切线交边于点.(1)求证:;(2)若,求的值.24.(8分)一张长为30cm,宽20cm的矩形纸片,如图1所示,将这张纸片的四个角各剪去一个边长相同的正方形后,把剩余部分折成一个无盖的长方体纸盒,如图1所示,如果折成的长方体纸盒的底面积为264cm2,求剪掉的正方形纸片的边长.25.(10分)已知关于的方程有两个不相等的实数根.(1)求的取值范围;(2)若,求的值.26.(10分)如图,直线经过⊙上的点,直线与⊙交于点和点,与⊙交于点,连接,.已知,,,.(1)求证:直线是⊙的切线;(2)求的长.
参考答案一、选择题(每小题3分,共30分)1、A【分析】点O所经过的路线是三段弧,一段是以点B为圆心,10为半径,圆心角为90°的弧,另一段是一条线段,和弧AB一样长的线段,最后一段是以点A为圆心,10为半径,圆心角为90°的弧,从而得出答案.【详解】由题意得点O所经过的路线长=90π×10故选A.【点睛】解题的关键是熟练掌握弧长公式:,注意在使用公式时度不带单位.2、C【分析】根据表格中的数据,0与最接近,故可得其近似根.【详解】由表得,0与最接近,故其近似根为故答案为C.【点睛】此题主要考查对近似根的理解,熟练掌握,即可解题.3、C【解析】用因式分解法解一元二次方程即可.【详解】∴或∴,故选C.【点睛】本题主要考查一元二次方程的解,掌握解一元二次方程的方法是解题的关键.4、A【分析】根据方差的意义即可得.【详解】方差越小,表示成绩波动性越小、越稳定观察表格可知,甲的方差最小,则派甲去参赛更合适故选:A.【点睛】本题考查了方差的意义,掌握理解方差的意义是解题关键.5、A【分析】利用圆的周长公式求得该弧的长度,然后由弧长公式进行计算.【详解】解:依题意得2π×2=,解得n=1.故选:A.【点睛】本题考查了弧长的计算.此题的已知条件是半径为2的圆的周长=半径为5的弧的弧长.6、B【分析】根据反比例函数图象与系数的关系解答.【详解】解:A、反比例函数中的>0,则该函数图象分布在第一、三象限,故本选项说法正确.
B、反比例函数中的>0,则该函数图象在每一象限内y随x的增大而减小,故本选项说法错误.
C、点P为图像上的任意一点,过点P作PA⊥x轴于点A.,∴△POA的面积=,故本选项正确.D、∵反比例函数,点A(-1,)和点B(,)在这个函数图像上,则y1<y2,故本选项正确.
故选:B.【点睛】本题考查了反比例函数的性质:反比例函数y=(k≠0)的图象是双曲线;当k>0,双曲线的两支分别位于第一、第三象限,在每一象限内y随x的增大而减小;当k<0,双曲线的两支分别位于第二、第四象限,在每一象限内y随x的增大而增大;还考查了k的几何意义.7、C【解析】欲求S1+S1,只要求出过A、B两点向x轴、y轴作垂线段与坐标轴所形成的矩形的面积即可,而矩形面积为双曲线的系数k,由此即可求出S1+S1.【详解】解:∵点A、B是双曲线上的点,分别经过A、B两点向x轴、y轴作垂线段,
则根据反比例函数的图象的性质得两个矩形的面积都等于|k|=2,
∴S1+S1=2+2-1×1=2.
故选:C.【点睛】本题主要考查了反比例函数的图象和性质及任一点坐标的意义,有一定的难度.8、A【解析】试题分析:根据题意得AP=AB,所以PB=AB-AP=AB,所以PB:AB=.故选B.考点:黄金分割点评:本题考查了黄金分割:把线段AB分成两条线段AC和BC(AC>BC),且使AC是AB和BC的比例中项(即AB:AC=AC:BC),叫做把线段AB黄金分割,点C叫做线段AB的黄金分割点;其中AC=AB≈0.618AB,并且线段AB的黄金分割点有两个.9、A【分析】根据垂径定理可得出CE的长度,在Rt△OCE中,利用勾股定理可得出OE的长度,再利用AE=AO+OE即可得出AE的长度.【详解】∵弦CD⊥AB于点E,CD=8cm,∴CE=CD=4cm.在Rt△OCE中,OC=5cm,CE=4cm,∴OE==3cm,∴AE=AO+OE=5+3=8cm.故选A.【点睛】本题考查了垂径定理以及勾股定理,利用垂径定理结合勾股定理求出OE的长度是解题的关键.10、D【分析】根据概率公式逐一判断即可.【详解】A、∵交通信号灯有“红、绿、黄”三种颜色,但是红黄绿灯发生的时间一般不相同,∴它们发生的概率不相同,∴选项A不正确;B、∵图钉上下不一样,∴钉尖朝上的概率和钉尖着地的概率不相同,∴选项B不正确;C、∵“直角三角形”三边的长度不相同,∴小亮在沿着Rt△ABC三边行走他出现在AB,AC与BC边上走,他出现在各边上的概率不相同,∴选项C不正确;D、小红掷一枚均匀的骰子,朝上的点数为“偶数”和“奇数”的可能性大小相等,∴选项D正确.故选:D.【点睛】此题考查的是概率问题,掌握根据概率公式分析概率的大小是解决此题的关键.二、填空题(每小题3分,共24分)11、.【解析】根据切线的性质可得出OB⊥AB,从而求出∠BOA的度数,利用弦BC∥AO,及OB=OC可得出∠BOC的度数,代入弧长公式即可得出答案:∵直线AB是⊙O的切线,∴OB⊥AB(切线的性质).又∵∠A=30°,∴∠BOA=60°(直角三角形两锐角互余).∵弦BC∥AO,∴∠CBO=∠BOA=60°(两直线平行,内错角相等).又∵OB=OC,∴△OBC是等边三角形(等边三角形的判定).∴∠BOC=60°(等边三角形的每个内角等于60°).又∵⊙O的半径为6cm,∴劣弧的长=(cm).12、1【解析】本题是营销问题,基本等量关系:利润=每件利润×销售量,每件利润=每件售价﹣每件进价.再根据所列二次函数求最大值.【详解】解:设利润为w元,则w=(20﹣x)(x﹣10)=﹣(x﹣1)2+25,∵10≤x≤20,∴当x=1时,二次函数有最大值25,故答案是:1.【点睛】本题考查了二次函数的应用,此题为数学建模题,借助二次函数解决实际问题.13、y=x2+2x(答案不唯一).【解析】设此二次函数的解析式为y=ax(x+2),令a=1即可.【详解】∵抛物线过点(0,0),(﹣2,0),∴可设此二次函数的解析式为y=ax(x+2),把a=1代入,得y=x2+2x.故答案为y=x2+2x(答案不唯一).【点睛】本题考查的是待定系数法求二次函数解析式,此题属开放性题目,答案不唯一.14、【解析】根据折叠的性质求出四边形BFDG是菱形,假设DF=BF=x,∴AF=AD﹣DF=8﹣x,根据在直角△ABF中,AB2+AF2=BF2,即可求解.【详解】解:∵四边形ABCD是矩形,∴AD∥BC,∴∠ADB=∠DBC∴FD∥BG,又∵DG∥BE,∴四边形BFDG是平行四边形,∵折叠,∴∠DBC=∠DBF,故∠ADB=∠DBF∴DF=BF,∴四边形BFDG是菱形;∵AB=6,AD=8,∴BD=1.∴OB=BD=2.假设DF=BF=x,∴AF=AD﹣DF=8﹣x.∴在直角△ABF中,AB2+AF2=BF2,即62+(8﹣x)2=x2,解得x=,即DG=BF=,故答案为:【点睛】此题主要考查矩形的折叠性质,解题的关键是熟知菱形的判定与性质及勾股定理的应用.15、1【分析】先判断出DE是△ABC的中位线,再根据三角形的中位线平行于第三边并且等于第三边的一半可得AB=2DE,问题得解.【详解】∵点D,E分别是AC,BC的中点,∴DE是△ABC的中位线,∴AB=2DE=2×50=1米.故答案为1.【点睛】本题考查了三角形的中位线平行于第三边并且等于第三边的一半,熟记定理并准确识图是解题的关键.16、300+100【分析】作DF⊥AC于F.解直角三角形分别求出BE、EC即可解决问题.【详解】作DF⊥AC于F.∵DF:AF=1:,AD=200米,∴tan∠DAF=,∴∠DAF=30°,∴DF=AD=×200=100(米),∵∠DEC=∠BCA=∠DFC=90°,∴四边形DECF是矩形,∴EC=DF=100(米),∵∠BAC=45°,BC⊥AC,∴∠ABC=45°,∵∠BDE=60°,DE⊥BC,∴∠DBE=90°﹣∠BDE=90°﹣60°=30°,∴∠ABD=∠ABC﹣∠DBE=45°﹣30°=15°,∠BAD=∠BAC﹣∠DAC=45°﹣30°=15°,∴∠ABD=∠BAD,∴AD=BD=200(米),在Rt△BDE中,sin∠BDE=,∴BE=BD•sin∠BDE=200×=300(米),∴BC=BE+EC=300+100(米);故答案为:300+100.【点睛】本题考查解直角三角形的应用仰角俯角问题,坡度坡角问题等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题17、k≤4且k≠1【分析】根据二次函数的定义和图象与x轴有交点则△≥0,可得关于k的不等式组,然后求出不等式组的解集即可.【详解】解:根据题意得k−1≠0且△=22−4×(k−1)×1≥0,解得k≤4且k≠1.故答案为:k≤4且k≠1.【点睛】本题考查了抛物线与x轴的交点问题:对于二次函数y=ax2+bx+c(a,b,c是常数,a≠0),△=b2−4ac决定抛物线与x轴的交点个数:△>0时,抛物线与x轴有2个交点;△=0时,抛物线与x轴有1个交点;△<0时,抛物线与x轴没有交点.18、337【分析】利用一元二次方程根与系数的关系,得出有关p,q的式子,再利用两个根都是质数,可分析得出结果.【详解】解:x1+x2=,x1x2==287q=7×41×q,x1和x2都是质数,则只有x1和x2是7和41,而q=1,所以7+41=,p=336,所以p+q=337,故答案为:337.【点睛】此题考查了一元二次方程根与系数的关系以及质数的概念,题目比较典型.三、解答题(共66分)19、(1)当x=45时,w有最大值,最大值是225;(2)获得200元的销售利润,销售单价应定为40元【分析】(1)根据销售利润=单件利润销售量,列出函数关系式,根据二次函数的性质求出最大值即可;(2)根据二次函数与一元二次方程的关系可计算得,同时要注意考虑实际问题,对答案进行取舍即可.【详解】解:与之间的函数解析式根据题意得:w,∵,当x=45时,w有最大值,最大值是225(2)当时,,解得,不符合题意,舍去,答:该商店销售这种双肩包每天要获得200元的销售利润,销售单价应定为40元.【点睛】本题考查二次函数与实际问题,解题的关键是能够根据题意列出函数关系式,并根据二次函数的性质求解实际问题.20、(1)y=;y=-x+6(2)【解析】(1)先利用待定系数法求出反比例函数解析式,进而确定出点A的坐标,再用待定系数法求出一次函数解析式;(2)先求出OB的解析式,进而求出AG,用三角形的面积公式即可得出结论.【详解】解:(1)如图,过点A作AF⊥x轴交BD于E,∵点B(3,2)在反比例函数的图象上,∴a=3×2=6,∴反比例函数的表达式为,∵B(3,2),∴EF=2,∵BD⊥y轴,OC=CA,∴AE=EF=AF,∴AF=4,∴点A的纵坐标为4,∵点A在反比例函数图象上,∴A(,4),∴,∴,∴一次函数的表达式为;(2)如图1,过点A作AF⊥x轴于F交OB于G,∵B(3,2),∴直线OB的解析式为y=,∴G(,1),∵A(,4),∴AG=4﹣1=3,∴S△AOB=S△AOG+S△ABG=×3×3=.【点睛】此题主要考查了待定系数法,三角形的面积公式,三角形的中位线,解本题的关键是用待定系数法求出直线AB的解析式.21、(1)每次下降的百分率为20%;(2)该商场要保证每天盈利6000元,那么每千克应涨价5元.【分析】(1)设每次降价的百分率为a,(1﹣a)2为两次降价的百分率,50降至32就是方程的平衡条件,列出方程求解即可;(2)根据题意列出一元二次方程,然后求出其解,最后根据题意确定其值.【详解】解:(1)设每次下降的百分率为a,根据题意,得:50(1﹣a)2=32,解得:a=1.8(舍)或a=0.2,答:每次下降的百分率为20%;(2)设每千克应涨价x元,由题意,得(10+x)(500﹣20x)=6000,整理,得x2﹣15x+50=0,解得:x1=5,x2=10,因为要尽快减少库存,所以x=5符合题意.答:该商场要保证每天盈利6000元,那么每千克应涨价5元.【点睛】本题主要考查了一元二次方程应用,关键是根据题意找准等量关系列出方程是解答本题的关键.22、(1);(2);(3)点的坐标为或【分析】(1)设出抛物线的顶点式,将顶点C的坐标和原点坐标代入即可;(2)先求出点A的坐标,再利用待定系数法求出AC的解析式,过点作轴交于点,设,则,然后利用“铅垂高,水平宽”即可求出面积与m的关系式,利用二次函数求最值,即可求出此时点D的坐标;(3)先证出为等边三角形,然后根据P点的位置和菱形的顶点顺序分类讨论:①当点与点重合时,易证:四边形是菱形,即可求出此时点P的坐标;②作点关于轴的对称点,当点与点重合时,易证:四边形是菱形,先求出,再根据锐角三角函数即可求出BP,从而求出此时点P的坐标.【详解】(1)解:设抛物线解析式为,∵顶点∴又∵图象过原点∴解出:∴即(2)令,即,解出:或∴设直线AC的解析式为y=kx+b将点,的坐标代入,可得解得:∴过点作轴交于点,设,则∴∴∴当时,有最大值当时,∴(3)∵,,∴∴∴为等边三角形①当点与点重合时,∴四边形是菱形∴②作点关于轴的对称点,当点与点重合时,∴四边形是菱形∴点是的角平分线与对称轴的交点,∴,∵,.在Rt△OBP中,∴综上所述,点的坐标为或【点睛】此题考查的是二次函数与图形的综合大题,掌握用待定系数法求二次函数的解析式、利用“铅垂高,水平宽”求面积的最值、菱形的判定定理和分类讨论是数学思想是解决此题的关键.23、(1)详见解析;(2)【分析】(1)直
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度标准化军训服务合同模板
- 班级课本剧排练与展示计划
- 音响设备仓库租赁协议样本
- 居民社区紧急广播安装协议
- 住宅楼装修施工合同工程
- 家庭保健保姆服务合同样本
- 农业养殖:合同交底与疫病防控
- 私募基金销售总监聘用协议
- 2024年创新工程建筑项目施工合作合同范本
- 茶叶配送货车租赁合同样本
- 幼儿心理学期末试卷(含答案)
- 《传统美德源远流长》观评报告
- XXX钢铁企业超低排放改造项目案例
- 2023年八年级上册语文教学活动 八年级语文组活动记录优秀(六篇)
- 《绩效使能 超越OKR》读书笔记思维导图
- 2023年中原农业保险股份有限公司招聘笔试题库及答案解析
- GB/T 21492-2019玻璃纤维增强塑料顶管
- GB/T 20977-2007糕点通则
- GB 17790-2008家用和类似用途空调器安装规范
- FZ/T 14042-2018棉与粘胶纤维氨纶包芯纱交织弹力印染布
- 压疮高危预警上报表
评论
0/150
提交评论