福建省厦门市海沧区鳌冠学校2022-2023学年数学九年级第一学期期末质量检测模拟试题含解析_第1页
福建省厦门市海沧区鳌冠学校2022-2023学年数学九年级第一学期期末质量检测模拟试题含解析_第2页
福建省厦门市海沧区鳌冠学校2022-2023学年数学九年级第一学期期末质量检测模拟试题含解析_第3页
福建省厦门市海沧区鳌冠学校2022-2023学年数学九年级第一学期期末质量检测模拟试题含解析_第4页
福建省厦门市海沧区鳌冠学校2022-2023学年数学九年级第一学期期末质量检测模拟试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年九上数学期末模拟试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.如图,⊙O是△ABC的外接圆,∠BOC=100°,则∠A的度数为()A.40° B.50° C.80° D.100°2.下列四个图形是中心对称图形().A. B. C. D.3.抛物线的顶点坐标()A.(-3,4) B.(-3,-4) C.(3,-4) D.(3,4)4.如图反比例函数()与正比例函数()相交于两点A,B.若点A(1,2),B坐标是()A.(,) B.(,) C.(,) D.(,)5.函数y=kx﹣k(k≠0)和y=﹣(k≠0)在同一平面直角坐标系中的图象可能是()A. B.C. D.6.下列各数:-2,,,,,,0.3010010001…,其中无理数的个数是()个.A.4 B.3 C.2 D.17.如图是二次函数y=ax1+bx+c(a≠0)图象的一部分,对称轴是直线x=﹣1.关于下列结论:①ab<0;②b1﹣4ac>0;③9a﹣3b+c>0;④b﹣4a=0;⑤方程ax1+bx=0的两个根为x1=0,x1=﹣4,其中正确的结论有()A.1个 B.3个 C.4个 D.5个8.如图,E为平行四边形ABCD的边AB延长线上的一点,且BE:AB=2:3,△BEF的面积为4,则平行四边形ABCD的面积为()

A.30 B.27 C.14 D.329.如图,△ABC内接于圆O,∠A=50°,∠ABC=60°,BD是圆O的直径,BD交AC于点E,连结DC,则∠AEB等于()A.70° B.110° C.90° D.120°10.点C为线段AB的黄金分割点,且AC>BC,下列说法正确的有()①AC=AB,②AC=AB,③AB:AC=AC:BC,④AC≈0.618ABA.1个 B.2个 C.3个 D.4个二、填空题(每小题3分,共24分)11.在一个不透明的袋子中装有8个红球和16个白球,它们只有颜色上的区别,现从袋中取走若干个红球,并放入相同数量的白球,搅拌均匀后,要使从袋中任意摸出一个球是红球的概率是,则取走的红球为_______个.12.若,则的值是______.13.请写出一个位于第一、三象限的反比例函数表达式,y=.14.计算:sin30°=_____.15.如图,在平面直角坐标系中,已知点E(﹣4,2),F(﹣1,﹣1).以原点O为位似中心,把△EFO扩大到原来的2倍,则点E的对应点E'的坐标为_____.16.若关于x的方程有两个不相等的实数根,则a的取值范围是________.17.二次函数的图像经过原点,则a的值是______.18.圆锥的底面半径是1,侧面积是3π,则这个圆锥的侧面展开图的圆心角为________.三、解答题(共66分)19.(10分)已知抛物线C1的解析式为y=-x2+bx+c,C1经过A(-2,5)、B(1,2)两点.(1)求b、c的值;(2)若一条抛物线与抛物线C1都经过A、B两点,且开口方向相同,称两抛物线是“兄弟抛物线”,请直接写出C1的一条“兄弟抛物线”的解析式.20.(6分)王大伯几年前承包了甲、乙两片荒山,各栽100棵杨梅树,成活98%.现已挂果,经济效益初步显现,为了分析收成情况,他分别从两山上随意各采摘了4棵树上的杨梅,每棵的产量如折线统计图所示.(1)分别计算甲、乙两山样本的平均数,并估算出甲、乙两山杨梅的产量总和;(2)试通过计算说明,哪个山上的杨梅产量较稳定?21.(6分)如图,中,,,为内部一点,.求证:.22.(8分)某手机店销售部型和部型手机的利润为元,销售部型和部型手机的利润为元.(1)求每部型手机和型手机的销售利润;(2)该手机店计划一次购进,两种型号的手机共部,其中型手机的进货量不超过型手机的倍,设购进型手机部,这部手机的销售总利润为元.①求关于的函数关系式;②该手机店购进型、型手机各多少部,才能使销售总利润最大?(3)在(2)的条件下,该手机店实际进货时,厂家对型手机出厂价下调元,且限定手机店最多购进型手机部,若手机店保持同种手机的售价不变,设计出使这部手机销售总利润最大的进货方案.23.(8分)建设中的大外环路是我市的一项重点民生工程.某工程公司承建的一段路基工程的施工土方量为120万立方,原计划由公司的甲、乙两个工程队从公路的两端同时相向施工150天完成.由于特殊情况需要,公司抽调甲队外援施工,由乙队先单独施工40天后甲队返回,两队又共同施工了110天,这时甲乙两队共完成土方量103.2万立方.(1)问甲、乙两队原计划平均每天的施工土方量分别为多少万立方?(2)在抽调甲队外援施工的情况下,为了保证150天完成任务,公司为乙队新购进了一批机械来提高效率,那么乙队平均每天的施工土方量至少要比原来提高多少万立方才能保证按时完成任务?24.(8分)如图,在平面直角坐标系中,抛物线交轴于点,交轴正半轴于点,与过点的直线相交于另一点,过点作轴,垂足为.(1)求抛物线的解析式.(2)点是轴正半轴上的一个动点,过点作轴,交直线于点,交抛物线于点.①若点在线段上(不与点,重合),连接,求面积的最大值.②设的长为,是否存在,使以点,,,为顶点的四边形是平行四边形?若存在,求出的值;若不存在,请说明理由.25.(10分)如图,在平面直角坐标系中,的三个顶点都在格点上,点的坐标为,请解答下列问题:(1)画出关于轴对称的,点的坐标为______;(2)在网格内以点为位似中心,把按相似比放大,得到,请画出;若边上任意一点的坐标为,则两次变换后对应点的坐标为______.26.(10分)计算:2cos30°+(π﹣3.14)0﹣

参考答案一、选择题(每小题3分,共30分)1、B【分析】根据圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半,得∠BOC=2∠A,进而可得答案.【详解】解:∵⊙O是△ABC的外接圆,∠BOC=100°,∴∠A=∠BOC=50°.故选:B.【点睛】本题考查了圆周角定理,解题的关键是掌握在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.2、C【分析】根据中心对称图形的概念对各选项分析判断即可得解.【详解】A、不是中心对称图形,故本选项不合题意;B、不是中心对称图形,故本选项不合题意;C、是中心对称图形,故本选项符合题意;D、不是中心对称图形,故本选项不合题意.故选:C.【点睛】本题考查了中心对称图形的概念,中心对称图形是要寻找对称中心,旋转180度后与原图重合.3、D【解析】根据抛物线顶点式的特点写出顶点坐标即可得.【详解】因为是抛物线的顶点式,根据顶点式的坐标特点,顶点坐标为(3,4),故选D.【点睛】本题考查了抛物线的顶点,熟练掌握抛物线顶点式的特点是解题的关键.4、A【分析】先根据点A的坐标求出两个函数解析式,然后联立两个解析式即可求出答案.【详解】将A(1,2)代入反比例函数(),得a=2,∴反比例函数解析式为:,将A(1,2)代入正比例函数(),得k=2,∴正比例函数解析式为:,联立两个解析式,解得或,∴点B的坐标为(-1,-2),故选:A.【点睛】本题考查了反比例函数和正比例函数,求出函数解析式是解题关键.5、D【分析】分别根据反比例函数及一次函数图象的特点对四个选项进行逐一分析即可.【详解】解:由反比例函数y=﹣(k≠0)的图象在一、三象限可知,﹣k>0,∴k<0,∴一次函数y=kx﹣k的图象经过一、二、四象限,故A、B选项错误;由反比例函数y=﹣(k≠0)的图象在二、四象限可知,﹣k<0,∴k>0,∴一次函数y=kx﹣k的图象经过一、三、四象限,故C选项错误,D选项正确;故选:D.【点睛】此题主要考查一次函数与反比例函数图像综合,解题的关键是熟知一次函数与反比例函数系数与图像的关系.6、B【分析】无理数,即非有理数之实数,不能写作两整数之比.若将它写成小数形式,小数点之后的数字有无限多个,并且不会循环,也就是说它是无限不循环小数.常见的无理数有大部分的平方根、π等.【详解】根据无理数的定义,下列各数:-2,,,,,,0.3010010001…,其中无理数是:,,0.3010010001…故选:B【点睛】考核知识点:无理数.理解无理数的定义是关键.7、C【分析】由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.【详解】解:∵抛物线开口向下,∴a<0,∵,∴b=4a,ab>0,∴b﹣4a=0,∴①错误,④正确,∵抛物线与x轴交于﹣4,0处两点,∴b1﹣4ac>0,方程ax1+bx=0的两个根为x1=0,x1=﹣4,∴②⑤正确,∵当x=﹣3时y>0,即9a﹣3b+c>0,∴③正确,故正确的有②③④⑤.故选:C.【点睛】本题主要考查图象与二次函数系数之间的关系,会利用对称轴的范围求1a与b的关系,以及二次函数与方程之间的转换,根的判别式以及特殊值的熟练运用8、A【解析】∵四边形ABCD是平行四边形,∴AB//CD,AB=CD,AD//BC,∴△BEF∽△CDF,△BEF∽△AED,∴,∵BE:AB=2:3,AE=AB+BE,∴BE:CD=2:3,BE:AE=2:5,∴,∵S△BEF=4,∴S△CDF=9,S△AED=25,∴S四边形ABFD=S△AED-S△BEF=25-4=21,∴S平行四边形ABCD=S△CDF+S四边形ABFD=9+21=30,故选A.【点睛】本题考查了平行四边形的性质,相似三角形的判定与性质等,熟记相似三角形的面积等于相似比的平方是解题的关键.9、B【解析】解:由题意得,∠A=∠D=50°,∠DCB=90°,∠DBC=40°,∠ABC=60°,ABD=20°,∠AEB=180°-∠ABD-∠D=110°,故选B.10、C【解析】根据黄金分割的概念和黄金比值进行解答即可得.【详解】∵点C数线段AB的黄金分割点,且AC>BC,∴AC=AB,故①正确;由AC=AB,故②错误;BC:AC=AC:AB,即:AB:AC=AC:BC,③正确;AC≈0.618AB,故④正确,故选C.【点睛】本题考查了黄金分割,理解黄金分割的概念,熟记黄金分割的比为是解题的关键.二、填空题(每小题3分,共24分)11、1【解析】设取走的红球有x个,根据概率公式可得方程,解之可得答案.【详解】设取走的红球有x个,根据题意,得:,解得:x=1,即取走的红球有1个,故答案为:1.【点睛】此题主要考查了概率公式,解题的关键是掌握随机事件A的概率P(A)=事件A可能出现的结果数÷所有可能出现的结果数.12、【分析】根据合比性质:,可得答案.【详解】由合比性质,得,故答案为:.【点睛】本题考查了比例的性质,利用合比性质是解题关键.13、(答案不唯一).【详解】设反比例函数解析式为,∵图象位于第一、三象限,∴k>0,∴可写解析式为(答案不唯一).考点:1.开放型;2.反比例函数的性质.14、1【解析】根据sin30°=12【详解】sin30°=12【点睛】本题考查的知识点是特殊角的三角函数值,解题的关键是熟练的掌握特殊角的三角函数值.15、(﹣8,4),(8,﹣4)【分析】根据在平面直角坐标系中,位似变换的性质计算即可.【详解】解:以原点O为位似中心,把△EFO扩大到原来的2倍,点E(﹣4,2),∴点E的对应点E'的坐标为(﹣4×2,2×2)或(4×2,﹣2×2),即(﹣8,4),(8,﹣4),故答案为:(﹣8,4),(8,﹣4).【点睛】本题考查的是位似变换的性质,在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或-k.16、且【分析】根据根的判别式∆>0,且二次项系数a-2≠0列式求解即可.当∆>0时,一元二次方程有两个不相等的实数根;当∆=0时,一元二次方程有两个相等的实数根;当∆<0时,一元二次方程没有实数根.【详解】由题意得,解得且,故答案为:且.【点睛】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式∆=b2﹣4ac与根的关系,熟练掌握根的判别式与根的关系式解答本题的关键.解答时要注意二次项的系数不能等于零.17、1【分析】根据题意将(0,0)代入二次函数,即可得出a的值.【详解】解:∵二次函数的图象经过原点,∴=0,∴a=±1,∵a+1≠0,∴a≠-1,∴a的值为1.故答案为:1.【点睛】本题考查二次函数图象上点的特征,图象过原点,可得出x=0,y=0,从而分析求值.18、120°【解析】根据圆锥的侧面积公式S=πrl得出圆锥的母线长,再结合扇形面积公式即可求出圆心角的度数.【详解】∵侧面积为3π,∴圆锥侧面积公式为:S=πrl=π×1×l=3π,解得:l=3,∴扇形面积为3π=,解得:n=120,∴侧面展开图的圆心角是120度.故答案为:120°.【点睛】此题主要考查了圆锥的侧面积公式应用以及与展开图扇形面积关系,求出圆锥的母线长是解决问题的关键.三、解答题(共66分)19、(1)b=-2,c=5;(2)(答案不唯一).【分析】(1)直接把点代入,求出的值即可得出抛物线的解析式;(2)根据题意,设“兄弟抛物线”的解析式为:,直接把点代入即可求得答案.【详解】(1)∵在C1上,∴,解得:.(2)根据“兄弟抛物线”的定义,知:“兄弟抛物线”经过A(-2,5)、B(1,2)两点,且开口方向相同,∴设“兄弟抛物线”的解析式为:,∵在“兄弟抛物线”上,∴,解得:.∴另一条“兄弟抛物线”的解析式为:.【点睛】本题主要考查了待定系数法求二次函数,正确理解题意,明确“兄弟抛物线”的定义是解题的关键.20、(1)甲、乙样本的平均数分别为:40kg,40kg;产量总和为7840千克(2)乙.【分析】(1)根据折线图先求出甲山和乙山的杨梅的总数就可以求出样本的平均数;利用样本平均数代替总体平均数即可估算出甲、乙两山杨梅的产量总和;(2)根据甲乙两山的样本数据求出方差,比较大小就可以求出结论.【详解】解:(1)甲山上4棵树的产量分别为:50千克、36千克、40千克、34千克,所以甲山产量的样本平均数为:千克;乙山上4棵树的产量分别为:36千克、40千克、48千克、36千克,所以乙山产量的样本平均数为千克.答:甲、乙两片山上杨梅产量数样本的平均数分别为:40kg,40kg;甲、乙两山的产量总和为:100×98%×2×40=7840千克.(2)由题意,得S甲2=(千克2);S乙2=(千克2)∵38>24∴S2甲>S2乙∴乙山上的杨梅产量较稳定.【点睛】本题考查了折线统计图、方差、平均数和极差,从图中找到所需的统计量是解题的关键.21、详见解析【分析】利用等式的性质判断出∠PBC=∠PAB,即可得出结论;【详解】解:,,又,,,又,.【点睛】此题主要考查了相似三角形的判定和性质,等腰直角三角形的性质,判断出∠PBC=∠PAB是解本题的关键.22、(1)每部型手机的销售利润为元,每部型手机的销售利润为元;(2)①;②手机店购进部型手机和部型手机的销售利润最大;(3)手机店购进部型手机和部型手机的销售利润最大.【解析】(1)设每部型手机的销售利润为元,每部型手机的销售利润为元,根据题意列出方程组求解即可;(2)①根据总利润=销售A型手机的利润+销售B型手机的利润即可列出函数关系式;②根据题意,得,解得,根据一次函数的增减性可得当当时,取最大值;(3)根据题意,,,然后分①当时,②当时,③当时,三种情况进行讨论求解即可.【详解】解:(1)设每部型手机的销售利润为元,每部型手机的销售利润为元.根据题意,得,解得答:每部型手机的销售利润为元,每部型手机的销售利润为元.(2)①根据题意,得,即.②根据题意,得,解得.,,随的增大而减小.为正整数,当时,取最大值,.即手机店购进部型手机和部型手机的销售利润最大.(3)根据题意,得.即,.①当时,随的增大而减小,当时,取最大值,即手机店购进部型手机和部型手机的销售利润最大;②当时,,,即手机店购进型手机的数量为满足的整数时,获得利润相同;③当时,,随的增大而增大,当时,取得最大值,即手机店购进部型手机和部型手机的销售利润最大.【点睛】本题主要考查一次函数的应用,二元一次方程组的应用,解此题的关键在于熟练掌握一次函数的增减性.23、(1)甲、乙两队原计划平均每天的施工土方量分别为0.42万立方和0.38万立方.(2)乙队平均每天的施工土方量至少要比原来提高0.112万立方才能保证按时完成任务.【解析】分析:(1)设甲队原计划平均每天的施工土方量为x万立方,乙队原计划平均每天的施工土方量为y万立方,根据“甲乙两队合作150天完成土方量120万立方,甲队施工110天、乙队施工150天完成土方量103.2万立方”,即可得出关于x、y的二元一次方程组,解之即可得出结论;(2)设乙队平均每天的施工土方量比原来提高a万立方才能保证按时完成任务,根据完成工作的总量=甲队完成的土方量+乙队完成的土方量,即可得出关于a的一元一次不等式,解之取其中的最小值即可得出结论.详解:(1)设甲队原计划平均每天的施工土方量为x万立方,乙队原计划平均每天的施工土方量为y万立方.根据题意,得解之,得答:甲、乙两队原计划平均每天的施工土方量分别为0.42万立方和0.38万立方.(2)设乙队平均每天的施工土方量至少要比原来提高z万立方.根据题意,得40(0.38+z)+110(0.38+z+0.42≥120,解之,得z≥0.112,答:乙队平均每天的施工土方量至少要比原来提高0.112万立方才能保证按时完成任务.点睛:本题考查了二元一次方程组的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,找出关于a的一元一次不等式.24、(1);(2)①;②存在,当时,以点,,,为顶点的四边形是平行四边形.【分析】(1)把,带入即可求得解析式;(2)先用含m的代数式表示点P、M的坐标,再根据三

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论