2023届湖南省汉寿县数学九上期末联考模拟试题含解析_第1页
2023届湖南省汉寿县数学九上期末联考模拟试题含解析_第2页
2023届湖南省汉寿县数学九上期末联考模拟试题含解析_第3页
2023届湖南省汉寿县数学九上期末联考模拟试题含解析_第4页
2023届湖南省汉寿县数学九上期末联考模拟试题含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年九上数学期末模拟试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每题4分,共48分)1.方程x2+2x-5=0经过配方后,其结果正确的是A. B.C. D.2.一个直角三角形的两直角边分别为x,y,其面积为1,则y与x之间的关系用图象表示为()A. B.C. D.3.对于二次函数y=(x-1)2+2的图象,下列说法正确的是()A.开口向下B.当x=-1,时,y有最大值是2C.对称轴是x=-1D.顶点坐标是(1,2)4.如图,等腰直角三角形的顶点A、C分别在直线a、b上,若a∥b,∠1=30°,则∠2的度数为()A.30° B.15° C.10° D.20°5.如图,一张矩形纸片ABCD的长BC=xcm,宽AB=ycm,以宽AB为边剪去一个最大的正方形ABEF,若剩下的矩形ECDF与原矩形ABCD相似,则的值为()A. B. C. D.6.在平面直角坐标系中,点(-2,6)关于原点对称的点的坐标是()A.(2,-6) B.(-2,6) C.(-6,2) D.(-6,2)7.下列计算正确的是()A.; B.; C.; D..8.m是方程的一个根,且,则的值为()A. B.1 C. D.9.如图,将△ABC放在每个小正方形的边长为1的网格中,点A,B,C均在格点上,则tanC的值是()A.2 B. C.1 D.10.已知点,如果把点绕坐标原点顺时针旋转后得到点,那么点的坐标为()A. B. C. D.11.如图,中,,于,平分,且于,与相交于点,于,交于,下列结论:①;②;③;④.其中正确的是()A.①② B.①③ C.①②③ D.①②③④12.已知关于x的分式方程无解,关于y的不等式组的整数解之和恰好为10,则符合条件的所有m的和为()A. B. C. D.二、填空题(每题4分,共24分)13.如图,某小型水库栏水坝的横断面是四边形ABCD,DC∥AB,测得迎水坡的坡角α=30°,已知背水坡的坡比为1.2:1,坝顶部DC宽为2m,坝高为6m,则坝底AB的长为_____m.14.若质量抽检时任抽一件西服成品为合格品的概率为0.9,则200件西服中大约有_____件合格品.15.已知袋中有若干个小球,它们除颜色外其它都相同,其中只有2个红球,若随机从中摸出一个,摸到红球的概率是,则袋中小球的总个数是_____16.如图,正方形和正方形的边长分别为3和1,点、分别在边、上,为的中点,连接,则的长为_________.17.写出一个你认为的必然事件_________.18.抛掷一枚质地均匀的硬币2次,2次抛掷的结果都是正面朝上的概率是____.三、解答题(共78分)19.(8分)数学兴趣小组对矩形面积为9,其周长m的范围进行了探究.兴趣小组的同学们已经能用“代数”的方法解决,以下是他们从“图形”的角度进行探究的部分过程,请把过程补充完整.(1)建立函数模型.设矩形相邻两边的长分别为x,y,由矩形的面积为9,得xy=9,即y=;由周长为m,得2(x+y)=m,即y=﹣x+.满足要求的(x,y)应是两个函数图象在第象限内交点的坐标.(2)画出函数图象.函数y=(x>0)的图象如图所示,而函数y=﹣x+的图象可由直线y=﹣x平移得到,请在同一直角坐标系中画出直线y=﹣x.(3)平移直线y=﹣x,观察函数图象.①当直线平移到与函数y=(x>0)的图象有唯一交点(3,3)时,周长m的值为;②在直线平移过程中,直线与函数y=(x>0)的图象交点个数还有哪些情况?请写出交点个数及对应的周长m的取值范围.(4)得出结论面积为9的矩形,它的周长m的取值范围为.20.(8分)为实现“先富带动后富,从而达到共同富裕”,某县为做好“精准扶贫”,2017年投入资金1000万元用于教育扶贫,以后投入资金逐年增加,2019年投入资金达到1440万元.(1)从2017年到2019年,该县投入用于教育扶贫资金的年平均增长率是多少?(2)假设保持这个年平均增长率不变,请预测一下2020年该县将投入多少资金用于教育扶贫?21.(8分)已知二次函数的图象经过点A(0,4),B(2,m).(1)求二次函数图象的对称轴.(2)求m的值.22.(10分)(1)如图①,在△ABC中,AB=m,AC=n(n>m),点P在边AC上.当AP=时,△APB∽△ABC;(2)如图②,已知△DEF(DE>DF),请用直尺和圆规在直线DF上求作一点Q,使DE是线段DF和DQ的比例项.(保留作图痕迹,不写作法)23.(10分)已知关于x的方程:(m﹣2)x2+x﹣2=0(1)若方程有实数根,求m的取值范围.(2)若方程的两实数根为x1、x2,且x12+x22=5,求m的值.24.(10分)(1)计算(2)解方程.25.(12分)先化简,再求值:,其中.26.如图,在中,AD是BC边上的高,。(1)求证:AC=BD(2)若,求AD的长。

参考答案一、选择题(每题4分,共48分)1、C【详解】解:根据配方法的意义,可知在方程的两边同时加减一次项系数的一半的平方,可知,即,配方为.故选:C.【点睛】此题主要考查了配方法,解题关键是明确一次项的系数,然后在方程的两边同时加减一次项系数的一半的平方,即可求解.2、C【解析】试题分析:根据题意有:xy=2;故y与x之间的函数图象为反比例函数,且根据xy实际意义x、y应大于0,其图象在第一象限,即可判断得出答案.解:∵xy=1∴y=(x>0,y>0).故选C.考点:反比例函数的应用;反比例函数的图象.3、D【解析】根据二次函数的性质对各选项进行判断.【详解】A、由二次函数的解析式y=(x+1)2+2,可知系数>1,故函数图像开口向上.故A项错误;B、将x=﹣1代入解析式,得到y=6,故B项错误;C、由二次函数的顶点式y=(x+1)2+2可知对称轴为x=1,故C项错误;D、函数的顶点式y=(x+1)2+2可知该函数的顶点坐标是(1,2),故D项正确.故选D.【点睛】本题主要考查二次函数的图像与性质,理解二次函数的顶点式是解答此题的关键.4、B【解析】分析:由等腰直角三角形的性质和平行线的性质求出∠ACD=60°,即可得出∠2的度数.详解:如图所示:∵△ABC是等腰直角三角形,∴∠BAC=90°,∠ACB=45°,∴∠1+∠BAC=30°+90°=120°,∵a∥b,∴∠ACD=180°-120°=60°,∴∠2=∠ACD-∠ACB=60°-45°=15°;故选B.点睛:本题考查了平行线的性质、等腰直角三角形的性质;熟练掌握等腰直角三角形的性质,由平行线的性质求出∠ACD的度数是解决问题的关键.5、B【分析】根据相似多边形对应边的比相等,可得到一个方程,解方程即可求得.【详解】∵四边形ABCD是矩形,∴AD=BC=xcm,∵四边形ABEF是正方形,∴EF=AB=ycm,∴DF=EC=(x﹣y)cm,∵矩形FDCE与原矩形ADCB相似,∴DF:AB=CD:AD,即:∴=,故选B.【点睛】本题考查了相似多边形的性质、矩形的性质、翻折变换的性质;根据相似多边形对应边的比相等得出方程是解决本题的关键.6、A【分析】根据关于原点对称的点的横坐标互为相反数,纵坐标互为相反数,可得答案.【详解】解:点A(-2,6)关于原点对称的点的坐标是(2,-6),

故选:A.【点睛】本题考查了关于原点对称的点的坐标,利用关于原点对称的点的横坐标互为相反数,纵坐标互为相反数是解题关键.7、B【解析】分析:分别根据次根式的加减运算法则以及合并同类项的法则、幂的乘方与积的乘方法则及同底数幂的除法法则对各选项进行逐一判断即可.详解:A.与不是同类项,不能合并,故本选项错误;B.,故本选项正确;C.,故本选项错误;D.,故本选项错误.故选:B.点睛:此题考查了二次根式的加减运算以及合并同类项、积的乘方运算和同底数幂的除法法则运算等知识,正确掌握运算法则是解题的关键.8、A【解析】将m代入关于x的一元二次方程x2+nx+m=0,通过解该方程即可求得m+n的值.【详解】解:∵m是关于x的一元二次方程x2+nx+m=0的根,

∴m2+nm+m=0,

∴m(m+n+1)=0;

又∵m≠0,

∴m+n+1=0,

解得m+n=-1;

故选:A.【点睛】本题考查了一元二次方程的解的定义.一元二次方程ax2+bx+c=0(a≠0)的解一定满足该一元二次方程的关系式.9、B【分析】在直角三角形ACD中,根据正切的意义可求解.【详解】如图:在RtACD中,tanC.故选B.【点睛】本题考查了锐角三角比的意义.将角转化到直角三角形中是解答的关键.10、B【分析】连接OP,OP1,过P作PN⊥y轴于N,过P1作P1M⊥y轴于M,根据旋转的性质,证明,再根据所在的象限,即可确定点的坐标.【详解】如图连接OP,OP1,过P作PN⊥y轴于N,过P1作P1M⊥y轴于M∵点绕坐标原点顺时针旋转后得到点∴∴∴,∴∵∴∵∴∵在第四象限∴点的坐标为故答案为:B.【点睛】本题考查了坐标轴的旋转问题,掌握旋转的性质是解题的关键.11、C【分析】根据∠ABC=45°,CD⊥AB可得出BD=CD,利用AAS判定Rt△DFB≌Rt△DAC,从而得出DF=AD,BF=AC.则CD=CF+AD,即AD+CF=BD;再利用AAS判定Rt△BEA≌Rt△BEC,得出CE=AE=AC,又因为BF=AC所以CE=AC=BF;连接CG.因为△BCD是等腰直角三角形,即BD=CD.又因为DH⊥BC,那么DH垂直平分BC.即BG=CG;在Rt△CEG中,CG是斜边,CE是直角边,所以CE<CG.即AE<BG.【详解】∵CD⊥AB,∠ABC=45°,∴△BCD是等腰直角三角形.∴BD=CD.故①正确;在Rt△DFB和Rt△DAC中,∵∠DBF=90°-∠BFD,∠DCA=90°-∠EFC,且∠BFD=∠EFC,∴∠DBF=∠DCA.又∵∠BDF=∠CDA=90°,BD=CD,∴△DFB≌△DAC.∴BF=AC;DF=AD.∵CD=CF+DF,∴AD+CF=BD;故②正确;在Rt△BEA和Rt△BEC中∵BE平分∠ABC,∴∠ABE=∠CBE.又∵BE=BE,∠BEA=∠BEC=90°,∴Rt△BEA≌Rt△BEC.∴CE=AE=AC.又由(1),知BF=AC,∴CE=AC=BF;故③正确;连接CG.∵△BCD是等腰直角三角形,∴BD=CD又DH⊥BC,∴DH垂直平分BC.∴BG=CG在Rt△CEG中,∵CG是斜边,CE是直角边,∴CE<CG.∵CE=AE,∴AE<BG.故④错误.故选C.【点睛】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、SSA、HL.在复杂的图形中有45°的角,有垂直,往往要用到等腰直角三角形,要注意掌握并应用此点.12、C【分析】分式方程去分母转化为整式方程,表示出整式方程的解,由分式方程无解确定出m的值,不等式组整理后表示出解集,由整数解之和恰好为10确定出m的范围,进而求出符合条件的所有m的和即可.【详解】解:,分式方程去分母得:mx+2x-12=3x-9,移项合并得:(m-1)x=3,当m-1=0,即m=1时,方程无解;当m-1≠0,即m≠1时,解得:x=,由分式方程无解,得到:或,解得:m=2或m=,不等式组整理得:,即0≤x<,由整数解之和恰好为10,得到整数解为0,1,2,3,4,可得4<≤5,即,则符合题意m的值为1和,之和为.故选:C.【点睛】此题考查了分式方程的解,以及一元一次不等式组的整数解,熟练掌握运算法则是解本题的关键.二、填空题(每题4分,共24分)13、(7+6)【解析】过点C作CE⊥AB,DF⊥AB,垂足分别为:E,F,得到两个直角三角形和一个矩形,在Rt△AEF中利用DF的长,求得线段AF的长;在Rt△BCE中利用CE的长求得线段BE的长,然后与AF、EF相加即可求得AB的长.【详解】解:如图所示:过点C作CE⊥AB,DF⊥AB,垂足分别为:E,F,

∵坝顶部宽为2m,坝高为6m,

∴DC=EF=2m,EC=DF=6m,

∵α=30°,

∴BE=(m),

∵背水坡的坡比为1.2:1,

∴,

解得:AF=5(m),

则AB=AF+EF+BE=5+2+6=(7+6)m,

故答案为(7+6)m.【点睛】本题考查了解直角三角形的应用,解题的关键是利用锐角三角函数的概念和坡度的概念求解.14、1.【分析】用总数×抽检时任抽一件西服成品为合格品的概率即可得出答案.【详解】200×0.9=1,答:200件西服中大约有1件合格品故答案为:1.【点睛】本题主要考查合格率问题,掌握合格产品数=总数×合格率是解题的关键.15、8个【解析】根据概率公式结合取出红球的概率即可求出袋中小球的总个数.【详解】袋中小球的总个数是:2÷=8(个).故答案为8个.【点睛】本题考查了概率公式,根据概率公式算出球的总个数是解题的关键.16、【分析】延长GE交AB于点O,作PH⊥OE于点H,则PH是△OAE的中位线,求得PH的长和HG的长,在Rt△PGH中利用勾股定理求解.【详解】解:延长GE交AB于点O,作PH⊥OE于点H.

则PH∥AB.

∵P是AE的中点,

∴PH是△AOE的中位线,

∴PH=OA=×(3-1)=1.

∵直角△AOE中,∠OAE=45°,

∴△AOE是等腰直角三角形,即OA=OE=2,

同理△PHE中,HE=PH=1.

∴HG=HE+EG=1+1=2.

∴在Rt△PHG中,PG=故答案是:.【点睛】本题考查了正方形的性质、勾股定理和三角形的中位线定理,正确作出辅助线构造直角三角形是关键.17、瓮中捉鳖(答案不唯一)【分析】此题根据事件的可能性举例即可.【详解】必然事件就是一定会发生的,例如:瓮中捉鳖等,故答案:瓮中捉鳖(答案不唯一).【点睛】此题考查事件的可能性:必然事件的概念.18、【解析】试题分析:列举出所有情况,看所求的情况占总情况的多少即可.共有正反,正正,反正,反反4种可能,则2次抛掷的结果都是正面朝上的概率为.故答案为.考点:概率公式.三、解答题(共78分)19、(1)一;(2)见解析;(3)①1;②0个交点时,m<1;1个交点时,m=1;2个交点时,m>1;(4)m≥1.【分析】(1)x,y都是边长,因此,都是正数,即可求解;(2)直接画出图象即可;(3)在直线平移过程中,交点个数有:0个、1个、2个三种情况,联立y=和y=﹣x+整理得:﹣mx+9=0,即可求解;(4)由(3)可得.【详解】解:(1)x,y都是边长,因此,都是正数,故点(x,y)在第一象限,故答案为:一;(2)图象如下所示:(3)①当直线平移到与函数y=(x>0)的图象有唯一交点(3,3)时,由y=﹣x+得:3=﹣3+m,解得:m=1,故答案为1;②在直线平移过程中,交点个数有:0个、1个、2个三种情况,联立y=和y=﹣x+并整理得:x²﹣mx+9=0,∵△=m²﹣4×9,∴0个交点时,m<1;1个交点时,m=1;2个交点时,m>1;(4)由(3)得:m≥1,故答案为:m≥1.【点睛】本题是反比例函数综合运用题,涉及到一次函数、一元二次方程、函数平移等知识点,此类探究题,通常按照题设条件逐次求解即可.20、(1)20%;(2)1728万元.【分析】(1)设年平均增长率为x,根据:2017年投入资金×(1+增长率)2=2019年投入资金,列出方程求解可得;(2)根据求得的增长率代入求得2020年的投入即可.【详解】解:(1)设该地投入教育扶贫资金的年平均增长率为x,根据题意,得:1000(1+x)2=1440,解得:x=0.2或x=﹣2.2(舍),答:从2017年到2019年,该地投入教育扶贫资金的年平均增长率为20%;(2)2020年投入的教育扶贫资金为1440×(1+20%)=1728万元.【点睛】本题考查的知识点是用一元二次方程求增长率问题,根据题目找出等量关系式是解此题的关键.21、(1)x=1;(2)m=4【分析】(1)由顶点式即可得出该二次函数图象的对称轴;(2)利用二次函数的对称性即可解决问题.【详解】解:(1)∵,∴该二次函数图象的对称轴为:直线x=1,(2)∵该二次函数图象的对称轴为:直线x=1,∴A(0,4),B(2,m).是关于直线x=1成对称,故m=4.【点睛】本题考查了二次函数的顶点式的性质,掌握顶点式的顶点坐标及对称性是解题的关键.22、(1);(2)见解析.【分析】(1)根据相似三角形的判定方法进行分析即可;(2)直接利用相似三角形的判定方法以及结合做一角等于已知角进而得出答案.【详解】(1)解:要使△APB∽△ABC成立,∠A是公共角,则,即,∴AP=.(2)解:作∠DEQ=∠F,如图点Q就是所求作的点【点睛】本题考查了相似变换,正确掌握相似三角形的判定方法是解题的关键.23、(1)m≥;(2)m=3【分析】(1)根据判别式即可求出答案;(2)根据根与系数的关系即可求出答案.【详解】解:(1)当m﹣2≠0时,△=1+8(m﹣2)≥0,∴m≥且m≠2,当m﹣2=0时,x﹣2

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论