2023届河南省林州市第七中学九年级数学第一学期期末学业水平测试试题含解析_第1页
2023届河南省林州市第七中学九年级数学第一学期期末学业水平测试试题含解析_第2页
2023届河南省林州市第七中学九年级数学第一学期期末学业水平测试试题含解析_第3页
2023届河南省林州市第七中学九年级数学第一学期期末学业水平测试试题含解析_第4页
2023届河南省林州市第七中学九年级数学第一学期期末学业水平测试试题含解析_第5页
已阅读5页,还剩22页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年九上数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.在平面直角坐标系中,二次函数()的图象如图所示,现给出以下结论:①;②;③;④(为实数)其中结论错误的有()A.1个 B.2个 C.3个 D.4个2.下列二次函数的开口方向一定向上的是()A.y=-3x2-1 B.y=-x2+1 C.y=x2+3 D.y=-x2-53.如图所示的两个三角形(B、F、C、E四点共线)是中心对称图形,则对称中心是()A.点C B.点DC.线段BC的中点 D.线段FC的中点4.如图,在△ABC中,点G为△ABC的重心,过点G作DE∥BC,分别交AB、AC于点D、E,则△ADE与四边形DBCE的面积比为()A. B. C. D.5.如图,小明将一个含有角的直角三角板绕着它的一条直角边所在的直线旋转一周,形成一个几何体,将这个几何体的侧面展开,得到的大致图形是()A. B.C. D.6.如图,A、B是曲线上的点,经过A、B两点向x轴、y轴作垂线段,若S阴影=1则S1+S2=()A.4 B.5 C.6 D.87.小广,小娇分别统计了自己近5次数学测试成绩,下列统计量中能用来比较两人成绩稳定性的是()A.方差 B.平均数 C.众数 D.中位数8.在平面直角坐标系中,△ABC与△A1B1C1位似,位似中心是原点O,若△ABC与△A1B1C1的相似比为1:2,且点A的坐标是(1,3),则它的对应点A1的坐标是()A.(-3,-1) B.(-2,-6) C.(2,6)或(-2,-6) D.(-1,-3)9.如图,在中,若,则的长是()A. B. C. D.10.如图,要测量小河两岸相对两点、宽度,可以在小河边的垂线上取一点,则得,,则小河的宽等于()A. B. C. D.二、填空题(每小题3分,共24分)11.从甲、乙、丙三人中任选两人参加“青年志愿者”活动,甲被选中的概率为___.12.如图,AC是⊙O的直径,弦BD⊥AC于点E,连接BC过点O作OF⊥BC于点F,若BD=12cm,AE=4cm,则OF的长度是___cm.13.若抛物线经过(3,0),对称轴经过(1,0),则_______.14.已知抛物线的对称轴是直线,其部分图象如图所示,下列说法中:①;②;③;④当时,,正确的是_____(填写序号).15.一元二次方程的解是.16.如图,Rt△ABC中,∠ACB=90°,AC=BC,在以AB的中点O为坐标原点,AB所在直线为x轴建立的平面直角坐标系中,将△ABC绕点B顺时针旋转,使点A旋转至y轴的正半轴上的点A'处,若AO=OB=2,则图中阴影部分面积为_____.17.如图是一张长方形纸片ABCD,已知AB=8,AD=7,E为AB上一点,AE=5,现要剪下一张等腰三角形纸片(△AEP),使点P落在长方形ABCD的某一条边上,则等腰三角形AEP的底边长是_____________.18.2019年元旦前,无为米蒂广场开业期间,某品牌服装店举行购物酬宾抽奖活动,抽奖箱内共有15张奖券,4张面值100元,5张面值200元,6张面值300元,小明从中任抽2张,则中奖总值至少300元的概率为_____.三、解答题(共66分)19.(10分)某商家在购进一款产品时,由于运输成本及产品成本的提高,该产品第天的成本(元/件)与(天)之间的关系如图所示,并连续50天均以80元/件的价格出售,第天该产品的销售量(件)与(天)满足关系式.(1)第40天,该商家获得的利润是______元;(2)设第天该商家出售该产品的利润为元.①求与之间的函数关系式,并指出第几天的利润最大,最大利润是多少?②在出售该产品的过程中,当天利润不低于1000元的共有多少天?20.(6分)如图,在等腰直角△ABC中,∠ACB=90°,AC=BC=;(1)作⊙O,使它过点A、B、C(要求尺规作图保留作图痕迹);(2)在(1)所作的圆中,求圆心角∠BOC的度数和该圆的半径21.(6分)在,,.点P是平面内不与点A,C重合的任意一点.连接AP,将线段AP绕点P逆时针旋转α得到线段DP,连接AD,BD,CP.(1)观察猜想如图1,当时,的值是,直线BD与直线CP相交所成的较小角的度数是.(2)类比探究如图2,当时,请写出的值及直线BD与直线CP相交所成的小角的度数,并就图2的情形说明理由.(3)解决问题当时,若点E,F分别是CA,CB的中点,点P在直线EF上,请直接写出点C,P,D在同一直线上时的值.22.(8分)在中,,点在边上运动,连接,以为一边且在的右侧作正方形.(1)如果,如图①,试判断线段与之间的位置关系,并证明你的结论;(2)如果,如图②,(1)中结论是否成立,说明理由.(3)如果,如图③,且正方形的边与线段交于点,设,,,请直接写出线段的长.(用含的式子表示)23.(8分)为倡导节能环保,降低能源消耗,提倡环保型新能源开发,造福社会.某公司研发生产一种新型智能环保节能灯,成本为每件40元.市场调查发现,该智能环保节能灯每件售价y(元)与每天的销售量为x(件)的关系如图,为推广新产品,公司要求每天的销售量不少于1000件,每件利润不低于5元.(1)求每件销售单价y(元)与每天的销售量为x(件)的函数关系式并直接写出自变量x的取值范围;(2)设该公司日销售利润为P元,求每天的最大销售利润是多少元?(3)在试销售过程中,受国家政策扶持,毎销售一件该智能环保节能灯国家给予公司补贴m(m≤40)元.在获得国家每件m元补贴后,公司的日销售利润随日销售量的增大而增大,则m的取值范围是(直接写出结果).24.(8分)如图,AB是⊙O的直径,过⊙O外一点P作⊙O的两条切线PC,PD,切点分别为C,D,连接OP,CD.(1)求证:OP⊥CD;(2)连接AD,BC,若∠DAB=50°,∠CBA=70°,OA=2,求OP的长.25.(10分)如图,一艘船由A港沿北偏东65°方向航行90km至B港,然后再沿北偏西40°方向航行至C港,C港在A港北偏东20°方向,求A,C两港之间的距离.26.(10分)如图,河流两岸PQ,MN互相平行,C、D是河岸PQ上间隔50m的两个电线杆,某人在河岸MN上的A处测得∠DAB=30°,然后沿河岸走了100m到达B处,测得∠CBF=70°,求河流的宽度(结果精确到个位,=1.73,sin70°=0.94,cos70°=0.34,tan70°=2.75)

参考答案一、选择题(每小题3分,共30分)1、B【分析】由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.【详解】①由抛物线可知:,,对称轴,∴,∴,故①错误;②由对称轴可知:,∴,,故②错误;③关于的对称点为,∴时,,故③正确;④当时,y的最小值为,∴时,,∴,故④正确故选:B.【点睛】本题考查了二次函数图象与系数的关系,结合图象得出系数之间的关系是解题的关键.2、C【解析】根据二次函数图象的开口方向与二次项系数的关系逐一判断即可.【详解】解:A.y=-3x2-1中,﹣3<0,二次函数图象的开口向下,故A不符合题意;B.y=-x2+1中,-<0,二次函数图象的开口向下,故B不符合题意;C.y=x2+3中,>0,二次函数图象的开口向上,故C符合题意;D.y=-x2-5中,-1<0,二次函数图象的开口向下,故D不符合题意;故选:C.【点睛】此题考查的是判断二次函数图像的开口方向,掌握二次函数图象的开口方向与二次项系数的关系是解决此题的关键.3、D【分析】直接利用中心对称图形的性质得出答案.【详解】解:两个三角形(B、F、C、E四点共线)是中心对称图形,则对称中心是:线段FC的中点.故选:D.【点睛】本题比较容易,考查识别图形的中心对称性.要注意正确区分轴对称图形和中心对称图形,中心对称是要寻找对称中心,旋转180度后重合.4、A【分析】连接AG并延长交BC于H,如图,利用三角形重心的性质得到AG=2GH,再证明△ADE∽△ABC,根据相似三角形的性质得到==,然后根据比例的性质得到△ADE与四边形DBCE的面积比.【详解】解:连接AG并延长交BC于H,如图,∵点G为△ABC的重心,∴AG=2GH,∴=,∵DE∥BC,∴△ADE∽△ABC,∴==()2=,∴△ADE与四边形DBCE的面积比=.故选:A.【点睛】本题考查了三角形的重心与相似三角形的性质与判定.重心到顶点的距离与重心到对边中点的距离之比为2∶1.5、C【分析】先根据面动成体得到圆锥,进而可知其侧面展开图是扇形,根据扇形的弧长公式求得扇形的圆心角,即可判别.【详解】设含有角的直角三角板的直角边长为1,则斜边长为,将一个含有角的直角三角板绕着它的一条直角边所在的直线旋转一周,形成一个几何体是圆锥,此圆锥的底面周长为:,圆锥的侧面展开图是扇形,,即,∴,∵,∴图C符合题意,故选:C.【点睛】本题考查了点、线、面、体中的面动成体,解题关键是根据扇形的弧长公式求得扇形的圆心角.6、D【分析】B是曲线上的点,经过A、B两点向x轴、y轴作垂线段围成的矩形面积都是5,从而求出S1和S2的值即可【详解】∵A、B是曲线上的点,经过A、B两点向x轴、y轴作垂线段围成的矩形面积都是5,,∵S阴影=1,∴S1=S2=4,即S1+S2=8,故选D【点睛】本题主要考查反比例函数上的点向坐标轴作垂线围成的矩形面积问题,难度不大7、A【分析】根据方差的意义:体现数据的稳定性,集中程度,波动性大小;方差越小,数据越稳定.要比较两位同学在五次数学测验中谁的成绩比较稳定,应选用的统计量是方差.【详解】平均数,众数,中位数都是反映数字集中趋势的数量,方差是反映数据离散水平的数据,也就会说反映数据稳定程度的数据是方差故选A考点:方差8、C【解析】根据如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或,即可求出答案.【详解】由位似变换中对应点坐标的变化规律得:点的对应点的坐标是或,即点的坐标是或故选:C.【点睛】本题考查了位似变换中对应点坐标的变化规律,理解位似的概念,并熟记变化规律是解题关键.9、B【分析】根据平行线分线段成比例定理,先算出,可得,根据DE的长即可求得BC的长.【详解】解:∵,∴,∵,∴,∵,∴.【点睛】本题考查了平行线分线段成比例定理,由题意求得是解题的关键.10、C【分析】利用∠ABC的正切函数求解即可.【详解】解:∵AC⊥CD,,,∴小河宽AC=BC·tan∠ABC=100tan50°(m).​故选C.【点睛】本题考查了解直角三角形的应用,解决此问题的关键在于正确理解题意得基础上建立数学模型,把实际问题转化为数学问题.二、填空题(每小题3分,共24分)11、【分析】画出树状图求解即可.【详解】如图,一共有6中不同的选法,选中甲的情况有4种,∴甲被选中的概率为:.故答案为【点睛】本题考查了树状图法或列表法求概率,解题的关键是正确画出树状图或表格,然后用符合条件的情况数m除以所有等可能发生的情况数n即可,即.12、.【分析】连接OB,根据垂径定理和勾股定理即可求出OB,从而求出EC,再根据勾股定理即可求出BC,根据三线合一即可求出BF,最后再利用勾股定理即可求出OF.【详解】连接OB,∵AC是⊙O的直径,弦BD⊥AC,∴BE=BD=6cm,在Rt△OEB中,OB2=OE2+BE2,即OB2=(OB﹣4)2+62,解得:OB=,∴AC=2OA=2OB=13cm则EC=AC﹣AE=9cm,BC===3cm,∵OF⊥BC,OB=OC∴BF=BC=cm,∴OF===cm,故答案为.【点睛】此题考查的是垂径定理和勾股定理,掌握垂径定理和勾股定理的结合是解决此题的关键.13、1【分析】由题意得,由函数图象的对称轴为直线x=1,根据点(3,1),求得图象过另一点(−1,1),代入可得a−b+c=1.【详解】解:由题意得:抛物线对称轴为直线x=1,又图象过点(3,1),∵点(3,1)关于直线x=1对称的点为(-1,1),

则图象也过另一点(−1,1),即x=−1时,a−b+c=1.

故答案为:1.【点睛】本题主要考查图象与二次函数系数之间的关系以及二次函数的对称行,重点是确定点(3,1)关于直线x=1对称的点为(-1,1).14、①③④.【解析】首先根据二次函数图象开口方向可得,根据图象与y轴交点可得,再根据二次函数的对称轴,结合a的取值可判定出b>0,根据a,b,c的正负即可判断出①的正误;把代入函数关系式,再根据对称性判断出②的正误;把中即可判断出③的正误;利用图象可以直接看出④的正误.【详解】解:根据图象可得:,对称轴:,故①正确;把代入函数关系式由抛物线的对称轴是直线,可得当故②错误;即:故③正确;由图形可以直接看出④正确.故答案为①③④.【点睛】此题主要考查了二次函数图象与系数的关系,关键是熟练掌握①二次项系数a决定抛物线的开口方向,当时,抛物线向上开口;当时,抛物线向下开口;②一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时(即),对称轴在y轴左侧;当a与b异号时(即),对称轴在y轴右侧.(简称:左同右异);③常数项c决定抛物线与y轴交点,抛物线与y轴交于.15、±1.【解析】试题分析:∵x1-4=0∴x=±1.考点:解一元二次方程-直接开平方法.16、.【分析】根据等腰三角形的性质求出AB,再根据旋转的性质可得BA′=AB,然后求出∠OA′B=30°,再根据直角三角形两锐角互余求出∠A′BA=60°,即旋转角为60°,再根据S阴影=S扇形ABA′+S△A′BC′﹣S△ABC﹣S扇形CBC′=S扇形ABA′﹣S扇形CBC′,然后利用扇形的面积公式列式计算即可得解.【详解】解:∵∠ACB=90°,AC=BC,∴△ABC是等腰直角三角形,∴AB=2OA=2OB=4,BC=2,∵△ABC绕点B顺时针旋转点A在A′处,∴BA′=AB,∴BA′=2OB,∴∠OA′B=30°,∴∠A′BA=60°,即旋转角为60°,S阴影=S扇形ABA′+S△A′BC′﹣S△ABC﹣S扇形CBC′=S扇形ABA′﹣S扇形CBC′==.故答案为:.【点睛】本题考查了阴影部分面积的问题,掌握等腰直角三角形的性质、旋转的性质、扇形面积公式是解题的关键.17、或或1【详解】如图所示:①当AP=AE=1时,∵∠BAD=90°,∴△AEP是等腰直角三角形,∴底边PE=AE=;②当PE=AE=1时,∵BE=AB﹣AE=8﹣1=3,∠B=90°,∴PB==4,∴底边AP===;③当PA=PE时,底边AE=1;综上所述:等腰三角形AEP的对边长为或或1;故答案为或或1.18、.【分析】有15张奖券中抽取2张的所有等可能结果数为种,其中中奖总值低于300元的有种知中奖总值至少300元的结果数为种,再根据概率公式求解可得.【详解】解:从15张奖券中抽取2张的所有等可能结果数为15×14=210种,其中中奖总值低于300元的有4×3=12种,则中奖总值至少300元的结果数为210﹣12=198种,所以中奖总值至少300元的概率为=,故答案为:.【点睛】本题主要考查列表法与树状图法,解题的关键根据题意得出所有等可能的结果数和符合条件的结果数.三、解答题(共66分)19、(1)1000(2)①,25,1225;②1.【分析】(1)根据图象可求出BC的解析式,即可求出第40天时的成本为60元,此时的产量为z=40+10=50,则可求得第40天的利润;(2)利用每件利润×总销量=总利润,进而求出二次函数最值即可.【详解】(1)根据图象得,B(20,40),C(50,70),设BC的解析式为y=kx+b,把B(20,40),C(50,70)代入得,,解得,,所以,直线BC的解析式为:y=x+20,当x=40时,y=60,即第40天时该产品的成本是60元/件,利润为:80-60=20(元/件)此时的产量为z=40+10=50件,则第40天的利润为:20×50=1000元故答案为:1000(2)①当时,,∴时,元;当时,,∴时,元;综上所述,当时,元②当时,若元,则(天),第15天至第20天的利润都不低于1000元;当时,若元,则(舍去)(天),所以第21天至第40天的利润都不低于1000元,则总共有1天的利润不低于1000元.【点睛】本题考查了二次函数的性质在实际生活中的应用.最大销售利润的问题常利函数的增减性来解答,我们首先要吃透题意,确定变量,建立函数模型,然后结合实际选择最优方案.根据每天的利润=一件的利润×销售件数,建立函数关系式,此题为数学建模题,借助二次函数解决实际问题.20、(1)见解析;(2)∠BOC=90°,该圆的半径为1【分析】(1)作出AC的垂直平分线,交AB于点O,然后以点O为圆心、以OA为半径作圆即可;(2)根据等腰直角三角形的性质和圆周角定理即可求出∠BOC,根据圆周角定理的推论可得AB是⊙O的直径,然后根据勾股定理求出AB即得结果.【详解】解:(1)如图所示,⊙O即为所求;(2)∵∠ACB=90°,AC=BC=,∴∠A=∠B=45°,,∴∠BOC=2∠A=90°,∵∠ACB=90°,∴AB是⊙O的直径,∴⊙O的半径=AB=1.【点睛】本题考查了尺规作三角形的外接圆、等腰直角三角形的性质、勾股定理、圆周角定理及其推论等知识,属于基础题目,熟练掌握上述知识是解题的关键.21、(1)1,(2)45°(3),【解析】(1)如图1中,延长CP交BD的延长线于E,设AB交EC于点O.证明,即可解决问题.(2)如图2中,设BD交AC于点O,BD交PC于点E.证明,即可解决问题.(3)分两种情形:①如图3﹣1中,当点D在线段PC上时,延长AD交BC的延长线于H.证明即可解决问题.②如图3﹣2中,当点P在线段CD上时,同法可证:解决问题.【详解】解:(1)如图1中,延长CP交BD的延长线于E,设AB交EC于点O.,,,,,,,,,,线BD与直线CP相交所成的较小角的度数是,故答案为1,.(2)如图2中,设BD交AC于点O,BD交PC于点E.,,,,,,,,直线BD与直线CP相交所成的小角的度数为.(3)如图3﹣1中,当点D在线段PC上时,延长AD交BC的延长线于H.,,,,,,,,,,,,,,,,,,,A,D,C,B四点共圆,,,,,设,则,,c.如图3﹣2中,当点P在线段CD上时,同法可证:,设,则,,,.【点睛】本题属于相似形综合题,考查了旋转变换,等边三角形的性质,等腰直角三角形的性质,全等三角形的判定和性质,相似三角形的判定和性质等知识,解题的关键是正确寻找全等三角形或相似三角形解决问题,学会用分类讨论的思想思考问题,属于中考压轴题.22、(1);证明见解析;(2)成立;理由见解析;(3).【分析】(1)先证明,得到,再根据角度转换得到∠BCF=90°即可;(2)过点作交于点,可得,再证明,得,即可证明;(3)过点作交的延长线于点,可求出,则,根据得出相似比,即可表示出CP.【详解】(1);证明:∵,,∴,由正方形得,∵,∴,在与中,,∴,∴,∴,即;(2)时,的结论成立;证明:如图2,过点作交于点,∵,∴,∴,在和中,,∴,∴,,即;(3)过点作交的延长线于点,∵,∴△AQC为等腰直角三角形,∵,∴,∵DC=x,∴,∵四边形ADEF为正方形,∴∠ADE=90°,∴∠PDC+∠ADQ=90°,∵∠ADQ+∠QAD=90°,∴∠PDC=∠QAD,∴,∴,∴,.【点睛】本题考查了全等三角形性质及判定,相似三角形的判定及性质,正方形的性质等,构建全等三角形,相似三角形是解决此题的关键.23、(1)y=﹣x+70,自变量x的取值范围1000≤x≤2500;见解析;(2)每天的最大销售利润是22500元;见解析;(3)20≤m≤1.【分析】(1)利用待定系数法即可解决问题;(2)构建二次函数,利用二次函数的性质即可解决问题;(3)构建二次函数,利用二次函数的性质即可解决问题.【详解】解:(1)设每件销售单价y(元)与每天的销售量为x(件)的函数关系式为y=kx+b,把与代入y=kx+b得,,解得:,∴每件销售单价y(元)与每天的销售量为x(件)的函数关系式为y=﹣x+70,当y≥45时,﹣x+70≥45,解得:x≤2500,∴自变量x的取值范围1000≤x≤2500;(2)根据题意得,P=,∵﹣<0,P有最大值,当x<1500时,P随x的增大而增大,∴当x=1500时,P的最大值为22500元,答:每天的最大销售利润是22500元;(3)由题意得,P=,∵对称轴为x=,∵1000≤x≤2500,∴x的取值范围在对称轴的左侧时P随x的增大而增大,≥2500,解得:m≥20,∴m的取值范围是:20≤m≤1.故答案为:20≤m≤1.【点睛】本题主要考查的是一次函数与二次函数的综合应用,关键是根据题意得到一次函数表达式,然后根据条件得到关于利润与销量的二次函数表达式,进而利用二次函数的性质求最值.24、(1)详见解析;(2).【分析】(1)方法1、先判断出Rt△ODP≌Rt△OCP,得出∠DOP=∠COP,即可得出结论;

方法2、判断出OP是CD的垂直平分线,即可得出结论;

(2)先求出∠COD=60°,得出△OCD是等边三角形,最后用锐角三角函数即可得出结论.【详解】解:(1)方法1、连接OC,OD,∴OC=OD,∵PD,PC是⊙O的切线,∵∠ODP=∠OCP=90°,在Rt△ODP和Rt△OCP中,,∴Rt△ODP≌Rt△OCP(HL),∴∠DOP=∠C

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论