2024届山东省济宁市汶上一中高一数学第二学期期末经典模拟试题含解析_第1页
2024届山东省济宁市汶上一中高一数学第二学期期末经典模拟试题含解析_第2页
2024届山东省济宁市汶上一中高一数学第二学期期末经典模拟试题含解析_第3页
2024届山东省济宁市汶上一中高一数学第二学期期末经典模拟试题含解析_第4页
2024届山东省济宁市汶上一中高一数学第二学期期末经典模拟试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届山东省济宁市汶上一中高一数学第二学期期末经典模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.设集合,则元素个数为()A.1 B.2 C.3 D.42.阅读如图的程序框图,运行该程序,则输出的值为()A.3 B.1C.-1 D.03.已知函数的部分图象如图所示,则()A. B.C. D.4.已知函数,若关于的不等式的解集为,则A. B.C. D.5.已知,且,则()A. B. C. D.6.已知直线经过两点,则的斜率为()A. B. C. D.7.在中,内角,,的对边分别为,,,且,,为的面积,则的最大值为()A.1 B.2 C. D.8.已知向量,向量,且,那么等于()A. B. C. D.9.已知等差数列的公差为2,前项和为,且,则的值为A.11 B.12 C.13 D.1410.在△ABC中,角所对的边分别为,且则最大角为()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.在等比数列中,若,则等于__________.12.己知是等差数列,是其前项和,,则______.13.已知,,则的值为.14.已知为数列{an}的前n项和,且,,则{an}的首项的所有可能值为______15.已知直线与,当时,实数_______;当时,实数_______.16.假设我国国民生产总值经过10年增长了1倍,且在这10年期间我国国民生产总值每年的年增长率均为常数,则______.(精确到)(参考数据)三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.总书记在党的十九大报告中指出,要在“幼有所育、学有所教、劳有所得、病有所医、老有所养、住有所居、弱有所扶”上不断取得新进展,保证全体人民在共建共享发展中有更多获得感.现S市政府针对全市10所由市财政投资建设的敬老院进行了满意度测评,得到数据如下表:敬老院ABCDEFGHIK满意度x(%)20342519262019241913投资原y(万元)80898978757165626052(1)求投资额关于满意度的相关系数;(2)我们约定:投资额关于满意度的相关系数的绝对值在0.75以上(含0.75)是线性相关性较强,否则,线性相关性较弱.如果没有达到较强线性相关,则采取“末位淘汰”制(即满意度最低的敬老院市财政不再继续投资,改为区财政投资).求在剔除“末位淘汰”的敬老院后投资额关于满意度的线性回归方程(系数精确到0.1)参考数据:,,,,.附:对于一组数据,其回归直线的斜率和截距的最小二乘估计公式分别为:.线性相关系数.18.已知函数.(1)求不等式的解集;(2)若当时,恒成立,求实数的取值范围.19.已知圆:,点是直线:上的一动点,过点作圆M的切线、,切点为、.(Ⅰ)当切线PA的长度为时,求点的坐标;(Ⅱ)若的外接圆为圆,试问:当运动时,圆是否过定点?若存在,求出所有的定点的坐标;若不存在,说明理由;(Ⅲ)求线段长度的最小值.20.已知直线l:x+3y﹣2=1.(1)求与l垂直,且过点(1,1)直线方程;(2)求圆心为(4,1),且与直线l相切的圆的方程.21.在平面直角坐标系中,以轴为始边,作两个角,它们终边分别经过点和,其中,,且.(1)求的值;(2)求的值.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】

计算圆心到直线的距离,可知直线与圆相交,可得结果.【详解】由,圆心为,半径为1所以可知圆心到直线的距离为所以直线与圆相交,故可知元素个数为2故选:B【点睛】本题主要考查直线与圆的位置关系判断,属基础题.2、D【解析】

从起始条件、开始执行程序框图,直到终止循环.【详解】,,,,,输出.【点睛】本题是直到型循环,只要满足判断框中的条件,就终止循环,考查读懂简单的程序框图.3、D【解析】

由函数的最值求出A,由周期求出,由五点法作图求出的值,从而得出结论.【详解】根据函数的图象求出函数的周期,然后可以求出,通过函数经过的最大值点求出值,即可得到函数的解析式.由函数的图象可知:,

.

当,函数取得最大值1,所以,

故选D.4、B【解析】

由题意可得,且,3为方程的两根,运用韦达定理可得,,的关系,可得的解析式,计算,(1),(4),比较可得所求大小关系.【详解】关于的不等式的解集为,可得,且,3为方程的两根,可得,,即,,,,可得,(1),(4),可得(4)(1),故选.【点睛】本题主要考查二次函数的图象和性质、函数与方程的思想,以及韦达定理的运用。5、D【解析】

首先根据,求得,结合角的范围,利用平方关系,求得,利用题的条件,求得,之后将角进行配凑,使得,利用正弦的和角公式求得结果.【详解】因为,所以,因为,所以.因为,,所以,所以,故选D.【点睛】该题考查的是有关三角函数化简求值问题,涉及到的知识点有同角三角函数关系式,正弦函数的和角公式,在解题的过程中,注意时刻关注角的范围.6、A【解析】

直接代入两点的斜率公式,计算即可得出答案。【详解】故选A【点睛】本题考查两点的斜率公式,属于基础题。7、C【解析】

先由正弦定理,将化为,结合余弦定理,求出,再结合正弦定理与三角形面积公式,可得,化简整理,即可得出结果.【详解】因为,所以可化为,即,可得,所以.又由正弦定理得,,所以,当且仅当时,取得最大值.故选C【点睛】本题主要考查解三角形,熟记正弦定理与余弦定理即可,属于常考题型.8、D【解析】

由两向量平行,其向量坐标交叉相乘相等,得到.【详解】因为,所以,解得:.【点睛】本题考查向量平行的坐标运算,考查基本运算,注意符号的正负.9、C【解析】

利用等差数列通项公式及前n项和公式,即可得到结果.【详解】∵等差数列的公差为2,且,∴∴∴.故选:C【点睛】本题考查了等差数列的通项公式及前n项和公式,考查计算能力,属于基础题.10、C【解析】

根据正弦定理可得三边的比例关系;由大边对大角可知最大,利用余弦定理求得余弦值,从而求得角的大小.【详解】由正弦定理可得:设,,最大为最大角本题正确选项:【点睛】本题考查正弦定理、余弦定理的应用,涉及到三角形中大边对大角的关系,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】

由等比数列的性质可得,,代入式子中运算即可.【详解】解:在等比数列中,若故答案为:【点睛】本题考查等比数列的下标和性质的应用.12、-1【解析】

由等差数列的结合,代入计算即可.【详解】己知是等差数列,是其前项和,所以,得,由等差中项得,所以.故答案为-1【点睛】本题考查了等差数列前项和公式和等差中项的应用,属于基础题.13、3【解析】

,故答案为3.14、【解析】

根据题意,化简得,利用式相加,得到,进而得到,即可求解结果.【详解】因为,所以,所以,将以上各式相加,得,又,所以,解得或.【点睛】本题主要考查了数列的递推关系式应用,其中解答中利用数列的递推关系式,得到关于数列首项的方程求解是解答的关键,着重考查了推理与运算能力,属于中档试题.15、【解析】

根据两直线垂直和平行的充要条件,得到关于的方程,解方程即可得答案.【详解】当时,,解得:;当时,且,解得:.故答案为:;.【点睛】本题考查两直线垂直和平行的充要条件,考查逻辑推理能力和运算求解能力,属于基础题.16、【解析】

根据题意,设10年前的国民生产总值为,则10年后的国民生产总值为,结合题意可得,解可得的值,即可得答案.【详解】解:根据题意,设10年前的国民生产总值为,则10年后的国民生产总值为,则有,即,解可得:,故答案为:.【点睛】本题考查函数的应用,涉及指数、对数的运算,关键是得到关于的方程,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)0.72;(2)【解析】

(1)由题意,根据相关系数的公式,可得的值,即可求解;(2)由(1)可知,得投资额关于满意度没有达到较强线性相关,利用公式求得的值,即可得出回归直线的方程.【详解】(1)由题意,根据相关系数的公式,可得.(2)由(1)可知,因为,所以投资额关于满意度没有达到较强线性相关,所以要“末位淘汰”掉K敬老院.重新计算得,,,,所以,.所以所求线性回归方程为.【点睛】本题主要考查了回归分析的应用,同时考查了回归系数的计算,以及回归直线方程的求解,其中解答中利用公式准确运算是解答的关键,着重考查了推理与运算能力,属于基础题.18、(1)见解析;(2)【解析】

(1)不等式可化为:,比较与的大小,进而求出解集.(2)恒成立即恒成立,则,进而求得答案.【详解】解:(1)不等式可化为:,①当时,不等无解;②当时,不等式的解集为;③当时,不等式的解集为.(2)由可化为:,必有:,化为,解得:.【点睛】本题考查含参不等式的解法以及恒成立问题,属于一般题.19、(Ⅰ);(Ⅱ);(Ⅲ)AB有最小值【解析】

试题分析:(Ⅰ)求点的坐标,需列出两个独立条件,根据解方程组解:由点是直线:上的一动点,得,由切线PA的长度为得,解得(Ⅱ)设P(2b,b),先确定圆的方程:因为∠MAP=90°,所以经过A、P、M三点的圆以MP为直径,其方程为:,再按b整理:由解得或,所以圆过定点(Ⅲ)先确定直线方程,这可利用两圆公共弦性质解得:由圆方程为及圆:,相减消去x,y平方项得圆方程与圆相交弦AB所在直线方程为:,相交弦长即:,当时,AB有最小值试题解析:(Ⅰ)由题可知,圆M的半径r=2,设P(2b,b),因为PA是圆M的一条切线,所以∠MAP=90°,所以MP=,解得所以4分(Ⅱ)设P(2b,b),因为∠MAP=90°,所以经过A、P、M三点的圆以MP为直径,其方程为:即由,7分解得或,所以圆过定点9分(Ⅲ)因为圆方程为即①圆:,即②②-①得圆方程与圆相交弦AB所在直线方程为:11分点M到直线AB的距离13分相交弦长即:当时,AB有最小值16分考点:圆的切线长,圆的方程,两圆的公共弦方程20、(1)3x﹣y﹣2=1;(2)(x﹣4)2+(y﹣1)2.【解析】

(1)根据两直线垂直的性质,设出所求直线的方程,将点坐标代入,由此求得所求直线方程.(2)利用圆心到直线的距离求得圆的半径,由此求得圆的方程.【详解】(1)根据题意,设要求直线的方程为3x﹣y﹣m=1,又由要求直线经过点(1,1),则有3﹣1﹣m=1,解可得m=2;即要求直线的

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论