北京市首都师大附属回龙观育新学校2023-2024学年数学高一下期末复习检测试题含解析_第1页
北京市首都师大附属回龙观育新学校2023-2024学年数学高一下期末复习检测试题含解析_第2页
北京市首都师大附属回龙观育新学校2023-2024学年数学高一下期末复习检测试题含解析_第3页
北京市首都师大附属回龙观育新学校2023-2024学年数学高一下期末复习检测试题含解析_第4页
北京市首都师大附属回龙观育新学校2023-2024学年数学高一下期末复习检测试题含解析_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

北京市首都师大附属回龙观育新学校2023-2024学年数学高一下期末复习检测试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.下列各角中与角终边相同的是()A. B. C. D.2.在中,、、分别是角、、的对边,若,则的形状是()A.等腰三角形 B.钝角三角形 C.直角三角形 D.锐角三角形3.已知是圆上的三点,()A. B. C. D.4.某学校的A,B,C三个社团分别有学生人,人,人,若采用分层抽样的方法从三个社团中共抽取人参加某项活动,则从A社团中应抽取的学生人数为()A.2 B.4 C.5 D.65.设,则“数列为等比数列”是“数列满足”的()A.充分非必要条件 B.必要非充分条件C.充要条件 D.既非充分也非必要条件6.名小学生的身高(单位:cm)分成了甲、乙两组数据,甲组:115,122,105,111,109;乙组:125,132,115,121,119.两组数据中相等的数字特征是()A.中位数、极差 B.平均数、方差C.方差、极差 D.极差、平均数7.同时具有性质:①图象的相邻两条对称轴间的距离是;②在上是增函数的一个函数为()A. B. C. D.8.若且,则下列四个不等式:①,②,③,④中,一定成立的是()A.①② B.③④ C.②③ D.①②③④9.对数列,“对于任意成立”是“其前n项和数列为递增数列”的()A.充分非必要条件 B.必要非充分条件C.充分必要条件 D.非充分非必要条件10.已知向量,则与().A.垂直 B.不垂直也不平行 C.平行且同向 D.平行且反向二、填空题:本大题共6小题,每小题5分,共30分。11.已知函数那么的值为.12.等差数列{}前n项和为.已知+-=0,=38,则m=_______.13.已知变量x,y线性相关,其一组数据如下表所示.若根据这组数据求得y关于x的线性回归方程为,则______.x1245y5.49.610.614.414.已知一组数据、、、、、,那么这组数据的平均数为__________.15.已知等差数列满足,则____________.16.我国高铁发展迅速,技术先进.经统计,在经停某站的高铁列车中,有10个车次的正点率为0.97,有20个车次的正点率为0.98,有10个车次的正点率为0.99,则经停该站高铁列车所有车次的平均正点率的估计值为___________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.等差数列中,公差,,.(1)求的通项公式;(2)若,求数列的前项和.18.已知角、的顶点在平面直角坐标系的原点,始边与轴正半轴重合,且角的终边与单位圆(圆心在原点,半径为1的圆)的交点位于第二象限,角的终边和单位圆的交点位于第三象限,若点的横坐标为,点的纵坐标为.(1)求、的值;(2)若,求的值.(结果用反三角函数值表示)19.在平面直角坐标系中,直线,.(1)直线是否过定点?若过定点,求出该定点坐标,若不过定点,请说明理由;(2)已知点,若直线上存在点满足条件,求实数的取值范围.20.正四棱锥中,,分别为,的中点.(1)求证:平面;(2)若,求异面直线和所成角的余弦值.21.已知向量,且(1)当时,求及的值;(2)若函数的最小值是,求实数的值.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】

写出与终边相同的角,取值得答案.【详解】解:与终边相同的角为,,取,得,与终边相同.故选:D.【点睛】本题考查终边相同角的表示法,属于基础题.2、A【解析】

由正弦定理和,可得,在利用三角恒等变换的公式,化简得,即可求解.【详解】在中,由正弦定理,由,可得,又由,则,即,即,解得,所以为等腰三角形,故选A.【点睛】本题主要考查了正弦定理的应用,以及三角形形状的判定,其中解答中熟练应用正弦定理的边角互化,合理利用三角恒等变换的公式化简是解答的关键,着重考查了推理与运算能力,属于基础题.3、C【解析】

先由等式,得出,并计算出,以及与的夹角为,然后利用平面向量数量积的定义可计算出的值.【详解】由于是圆上的三点,,则,,故选C.【点睛】本题考查平面向量的数量积的计算,解题的关键就是要确定向量的模和夹角,考查计算能力,属于中等题.4、B【解析】

分层抽样每部分占比一样,通过A,B,C三个社团为,易得A中的人数。【详解】A,B,C三个社团人数比为,所以12中A有人,B有人,C有人。故选:B【点睛】此题考查分层抽样原理,根据抽样前后每部分占比一样求解即可,属于简单题目。5、A【解析】

“数列为等比数列”,则,数列满足.反之不能推出,可以举出反例.【详解】解:“数列为等比数列”,则,数列满足.充分性成立;反之不能推出,例如,数列满足,但数列不是等比数列,即必要性不成立;故“数列为等比数列”是“数列满足”的充分非必要条件故选:.【点睛】本题考查了等比数列的定义、简易逻辑的判定方法,考查了推理能力与计算能力,属于中档题.6、C【解析】

将甲、乙两组数据的极差、平均数、中位数、方差全部算出来,并进行比较,可得出答案.【详解】甲组数据由小到大排列依次为:、、、、,极差为,平均数为中位数为,方差为,乙组数据由小到大排列依次为:、、、、,极差为,平均数为中位数为,方差为,因此,两组数据相等的是极差和方差,故选C.【点睛】本题考查样本的数字特征,理解极差、平均数、中位数、方差的定义并利用相关公式进行计算是解本题的关键,考查计算能力,属于基础题.7、C【解析】由①得函数的最小正周期是,排除.对于B:,当时,,此时B选项对应函数是减函数,C选项对应函数是增函数,满足②,故选C.8、C【解析】

根据且,可得,,且,,根据不等式的性质可逐一作出判断.【详解】由且,可得,∴,且,,由此可得①当a=0时,不成立,②由,,则成立,③由,,可得成立,④由,若,则不成立,因此,一定成立的是②③,故选:C.【点睛】本题考查不等式的基本性质的应用,属于基础题.9、A【解析】

根据递增数列的性质和充分必要条件判断即可【详解】对于任意成立可以推出其前n项和数列为递增数列,但反过来不成立如当时其,此时为递增数列但所以“对于任意成立”是“其前n项和数列为递增数列”的充分非必要条件故选:A【点睛】要说明一个命题不成立,只需举出一个反例即可.10、A【解析】

通过计算两个向量的数量积,然后再判断两个向量能否写成的形式,这样可以选出正确答案.【详解】因为,,所以,而不存在实数,使成立,因此与不共线,故本题选A.【点睛】本题考查了两个平面向量垂直的判断,考查了平面向量共线的判断,考查了数学运算能力.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】试题分析:因为函数所以==.考点:本题主要考查分段函数的概念,计算三角函数值.点评:基础题,理解分段函数的概念,代入计算.12、10【解析】

根据等差数列的性质,可得:+=2,又+-=0,则2=,解得=0(舍去)或=2.则,,所以m=10.13、4.3【解析】

由所给数据求出,根据回归直线过中心点可求解.【详解】由表格得到,,将样本中心代入线性回归方程得.故答案为:4.3【点睛】本题考查线性回归直线方程,掌握回归直线的性质是解题关键,即回归直线必过中心点.14、【解析】

利用平均数公式可求得结果.【详解】由题意可知,数据、、、、、的平均数为.故答案为:.【点睛】本题考查平均数的计算,考查平均数公式的应用,考查计算能力,属于基础题.15、9【解析】

利用等差数列下标性质求解即可【详解】由等差数列的性质可知,,则.所以.故答案为:9【点睛】本题考查等差数列的性质,熟记性质是关键,是基础题16、1.98.【解析】

本题考查通过统计数据进行概率的估计,采取估算法,利用概率思想解题.【详解】由题意得,经停该高铁站的列车正点数约为,其中高铁个数为11+21+11=41,所以该站所有高铁平均正点率约为.【点睛】本题考点为概率统计,渗透了数据处理和数学运算素养.侧重统计数据的概率估算,难度不大.易忽视概率的估算值不是精确值而失误,根据分类抽样的统计数据,估算出正点列车数量与列车总数的比值.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】

(1)由和可列出方程组,解出和,即得通项公式;(2)将(1)中所得通项公式代入,列项,用裂项相消法求的前n项和.【详解】解:(1)因为,,所以因为,所以故的通项公式为.(2)因为,所以.【点睛】本题考查求等差数列通项公式和用裂项相消法求数列前n项和,是典型考题.18、(1);(2)【解析】

(1)可根据单位圆定义求出,再由二倍角正弦公式即可求解;(2)先求出由可求得,结合反三角函数即可求得【详解】(1)由题可知:,,,;(2)由,,又,【点睛】本题考查单位圆的定义,二倍角公式的应用,两角差余弦公式的用法,属于中档题19、(1)过定点,定点坐标为;(2)或.【解析】

(1)假设直线过定点,则关于恒成立,利用即可结果;(2)直线上存在点,求得,故点在以为圆心,2为半径的圆上,根据题意,该圆和直线有交点,即圆心到直线的距离小于或等于半径,由此求得实数的取值范围.【详解】(1)假设直线过定点,则,即关于恒成立,∴,∴,所以直线过定点,定点坐标为(2)已知点,,设点,则,,∵,∴,∴所以点的轨迹方程为圆,又点在直线:上,所以直线:与圆有公共点,设圆心到直线的距离为,则,解得实数的范围为或.【点睛】本题主要考查直线过定点问题以及直线与圆的位置关系,属于中档题.解答直线与圆的位置关系的题型,常见思路有两个:一是考虑圆心到直线的距离与半径之间的大小关系;二是直线方程与圆的方程联立,考虑运用韦达定理以及判别式来解答.20、(1)见解析(2)【解析】

(1)取的中点,连接、,可得四边形为平行四边形,得到,由线面平行的判定可得平面;(2)连接交于,则为的中点,结合为的中点,得,可得(或其补角)为异面直线和所成角,在正四棱锥中,由为的中点,且,可得,设,求解三角形可得异面直线和所成角的余弦值.【详解】(1)取的中点,连接、,是的中点,且,在正四棱锥中,底面为正方形,且,又为的中点,且,且,则四边形为平行四边形,,平面,平面,平面;(2)连接交于,则为的中点,又为的中点,,又,(或其补角)为异面直线和所成角,在正四棱锥中,由为的中点,且,,设,则,,,则,因此,异面直线和所成角的余弦值为.【点睛】本题考查直线与平面平行的判定,考查空间想象能力与思维能力,训练了异面直线所成角的求法,是中档题.21、(1),(2).【解析】

(1)以向量为载体求解向量数量积、模长,我们只需要把向量坐标表示出来,最后用公式就能

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论