版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
安徽省无为县中学2024年高考数学押题试卷注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.函数的图像大致为()A. B.C. D.2.已知集合,B={y∈N|y=x﹣1,x∈A},则A∪B=()A.{﹣1,0,1,2,3} B.{﹣1,0,1,2} C.{0,1,2} D.{x﹣1≤x≤2}3.已知角的终边与单位圆交于点,则等于()A. B. C. D.4.已知函数的图象如图所示,则下列说法错误的是()A.函数在上单调递减B.函数在上单调递增C.函数的对称中心是D.函数的对称轴是5.已知,则()A. B. C. D.6.若表示不超过的最大整数(如,,),已知,,,则()A.2 B.5 C.7 D.87.若(),,则()A.0或2 B.0 C.1或2 D.18.幻方最早起源于我国,由正整数1,2,3,……,这个数填入方格中,使得每行、每列、每条对角线上的数的和相等,这个正方形数阵就叫阶幻方.定义为阶幻方对角线上所有数的和,如,则()A.55 B.500 C.505 D.50509.若直线与圆相交所得弦长为,则()A.1 B.2 C. D.310.已知集合,则=()A. B. C. D.11.若,,,则()A. B.C. D.12.在空间直角坐标系中,四面体各顶点坐标分别为:.假设蚂蚁窝在点,一只蚂蚁从点出发,需要在,上分别任意选择一点留下信息,然后再返回点.那么完成这个工作所需要走的最短路径长度是()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.若变量,满足约束条件则的最大值为________.14.若函数,则的值为______.15.已知,为正实数,且,则的最小值为________________.16.函数的极大值为______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在直角坐标系中,直线的参数方程为(为参数,).在以为极点,轴正半轴为极轴的极坐标中,曲线:.(1)当时,求与的交点的极坐标;(2)直线与曲线交于,两点,线段中点为,求的值.18.(12分)如图,D是在△ABC边AC上的一点,△BCD面积是△ABD面积的2倍,∠CBD=2∠ABD=2θ.(Ⅰ)若θ=,求的值;(Ⅱ)若BC=4,AB=2,求边AC的长.19.(12分)在平面直角坐标系中,以原点为极点,x轴正半轴为极轴建立极坐标系,并在两坐标系中取相同的长度单位.已知曲线C的极坐标方程为ρ=2cosθ,直线l的参数方程为(t为参数,α为直线的倾斜角).(1)写出直线l的普通方程和曲线C的直角坐标方程;(2)若直线l与曲线C有唯一的公共点,求角α的大小.20.(12分)已知集合,.(1)若,则;(2)若,求实数的取值范围.21.(12分)电视传媒公司为了解某地区观众对某体育节目的收视情况,随机抽取了100名观众进行调查,其中女性有55名,下面是根据调查结果绘制的观众日均收看该体育节目时间的频率分布直方图:将日均收看该体育节目时间不低于40分钟的观众称为“体育迷”.(1)根据已知条件完成下面的列联表,并据此资料你是否认为“体育迷”与性别有关?非体育迷体育迷合计男女1055合计(2)将上述调查所得到的频率视为概率.现在从该地区大量电视观众中,采用随机抽样方法每次抽取1名观众,抽取3次,记被抽取的3名观众中的“体育迷”人数为X.若每次抽取的结果是相互独立的,求X的分布列,期望E(X)和方差D(X).附:.P(K2≥k)0.050.01k3.8416.63522.(10分)如图,设点为椭圆的右焦点,圆过且斜率为的直线交圆于两点,交椭圆于点两点,已知当时,(1)求椭圆的方程.(2)当时,求的面积.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】
根据排除,,利用极限思想进行排除即可.【详解】解:函数的定义域为,恒成立,排除,,当时,,当,,排除,故选:.【点睛】本题主要考查函数图象的识别和判断,利用函数值的符号以及极限思想是解决本题的关键,属于基础题.2、A【解析】
解出集合A和B即可求得两个集合的并集.【详解】∵集合{x∈Z|﹣2<x≤3}={﹣1,0,1,2,3},B={y∈N|y=x﹣1,x∈A}={﹣2,﹣1,0,1,2},∴A∪B={﹣2,﹣1,0,1,2,3}.故选:A.【点睛】此题考查求集合的并集,关键在于准确求解不等式,根据描述法表示的集合,准确写出集合中的元素.3、B【解析】
先由三角函数的定义求出,再由二倍角公式可求.【详解】解:角的终边与单位圆交于点,,故选:B【点睛】考查三角函数的定义和二倍角公式,是基础题.4、B【解析】
根据图象求得函数的解析式,结合余弦函数的单调性与对称性逐项判断即可.【详解】由图象可得,函数的周期,所以.将点代入中,得,解得,由,可得,所以.令,得,故函数在上单调递减,当时,函数在上单调递减,故A正确;令,得,故函数在上单调递增.当时,函数在上单调递增,故B错误;令,得,故函数的对称中心是,故C正确;令,得,故函数的对称轴是,故D正确.故选:B.【点睛】本题考查由图象求余弦型函数的解析式,同时也考查了余弦型函数的单调性与对称性的判断,考查推理能力与计算能力,属于中等题.5、D【解析】
根据指数函数的单调性,即当底数大于1时单调递增,当底数大于零小于1时单调递减,对选项逐一验证即可得到正确答案.【详解】因为,所以,所以是减函数,又因为,所以,,所以,,所以A,B两项均错;又,所以,所以C错;对于D,,所以,故选D.【点睛】这个题目考查的是应用不等式的性质和指对函数的单调性比较大小,两个式子比较大小的常用方法有:做差和0比,作商和1比,或者直接利用不等式的性质得到大小关系,有时可以代入一些特殊的数据得到具体值,进而得到大小关系.6、B【解析】
求出,,,,,,判断出是一个以周期为6的周期数列,求出即可.【详解】解:.,∴,,,同理可得:;;.;,,…….∴.故是一个以周期为6的周期数列,则.故选:B.【点睛】本题考查周期数列的判断和取整函数的应用.7、A【解析】
利用复数的模的运算列方程,解方程求得的值.【详解】由于(),,所以,解得或.故选:A【点睛】本小题主要考查复数模的运算,属于基础题.8、C【解析】
因为幻方的每行、每列、每条对角线上的数的和相等,可得,即得解.【详解】因为幻方的每行、每列、每条对角线上的数的和相等,所以阶幻方对角线上数的和就等于每行(或每列)的数的和,又阶幻方有行(或列),因此,,于是.故选:C【点睛】本题考查了数阵问题,考查了学生逻辑推理,数学运算的能力,属于中档题.9、A【解析】
将圆的方程化简成标准方程,再根据垂径定理求解即可.【详解】圆的标准方程,圆心坐标为,半径为,因为直线与圆相交所得弦长为,所以直线过圆心,得,即.故选:A【点睛】本题考查了根据垂径定理求解直线中参数的方法,属于基础题.10、D【解析】
先求出集合A,B,再求集合B的补集,然后求【详解】,所以.故选:D【点睛】此题考查的是集合的并集、补集运算,属于基础题.11、C【解析】
利用指数函数和对数函数的单调性比较、、三个数与和的大小关系,进而可得出、、三个数的大小关系.【详解】对数函数为上的增函数,则,即;指数函数为上的增函数,则;指数函数为上的减函数,则.综上所述,.故选:C.【点睛】本题考查指数幂与对数式的大小比较,一般利用指数函数和对数函数的单调性结合中间值法来比较,考查推理能力,属于基础题.12、C【解析】
将四面体沿着劈开,展开后最短路径就是的边,在中,利用余弦定理即可求解.【详解】将四面体沿着劈开,展开后如下图所示:最短路径就是的边.易求得,由,知,由余弦定理知其中,∴故选:C【点睛】本题考查了余弦定理解三角形,需熟记定理的内容,考查了学生的空间想象能力,属于中档题.二、填空题:本题共4小题,每小题5分,共20分。13、7【解析】
画出不等式组表示的平面区域,数形结合,即可容易求得目标函数的最大值.【详解】作出不等式组所表示的平面区域,如下图阴影部分所示.观察可知,当直线过点时,有最大值,.故答案为:.【点睛】本题考查二次不等式组与平面区域、线性规划,主要考查推理论证能力以及数形结合思想,属基础题.14、【解析】
根据题意,由函数的解析式求出的值,进而计算可得答案.【详解】根据题意,函数,则,则;故答案为:.【点睛】本题考查分段函数的性质、对数运算法则的应用,考查函数与方程思想、转化与化归思想,考查运算求解能力.15、【解析】
由,为正实数,且,可知,于是,可得,再利用基本不等式即可得出结果.【详解】解:,为正实数,且,可知,,.当且仅当时取等号.的最小值为.故答案为:.【点睛】本题考查了基本不等式的性质应用,恰当变形是解题的关键,属于中档题.16、【解析】
先求函的定义域,再对函数进行求导,再解不等式得单调区间,进而求得极值点,即可求出函数的极大值.【详解】函数,,,令得,,当时,,函数单调递增;当时,,函数单调递减,当时,函数取到极大值,极大值为.故答案为:.【点睛】本题考查利用导数研究函数的极值,考查函数与方程思想、转化与化归思想,考查运算求解能力,求解时注意定义域优先法则的应用.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1),;(2)【解析】
(1)依题意可知,直线的极坐标方程为(),再对分三种情况考虑;(2)利用直线参数方程参数的几何意义,求弦长即可得到答案.【详解】(1)依题意可知,直线的极坐标方程为(),当时,联立解得交点,当时,经检验满足两方程,(易漏解之处忽略的情况)当时,无交点;综上,曲线与直线的点极坐标为,,(2)把直线的参数方程代入曲线,得,可知,,所以.【点睛】本题考查直线与曲线交点的极坐标、利用参数方程参数的几何意义求弦长,考查函数与方程思想、转化与化归思想、分类讨论思想,考查逻辑推理能力、运算求解能力.18、(Ⅰ);(Ⅱ)【解析】
(Ⅰ)利用三角形面积公式以及并结合正弦定理,可得结果.(Ⅱ)根据,可得,然后使用余弦定理,可得结果.【详解】(Ⅰ),所以所以;(Ⅱ),所以,所以,,所以,所以边.【点睛】本题考查三角形面积公式,正弦定理以及余弦定理的应用,关键在于识记公式,属中档题.19、(1)当时,直线l方程为x=-1;当时,直线l方程为y=(x+1)tanα;x2+y2=2x(2)或.【解析】
(1)对直线l的倾斜角分类讨论,消去参数即可求出其普通方程;由,即可求出曲线C的直角坐标方程;(2)将直线l的参数方程代入曲线C的直角坐标方程,根据条件Δ=0,即可求解.【详解】(1)当时,直线l的普通方程为x=-1;当时,消去参数得直线l的普通方程为y=(x+1)tanα.由ρ=2cosθ,得ρ2=2ρcosθ,所以x2+y2=2x,即为曲线C的直角坐标方程.(2)把x=-1+tcosα,y=tsinα代入x2+y2=2x,整理得t2-4tcosα+3=0.由Δ=16cos2α-12=0,得cos2α=,所以cosα=或cosα=,故直线l的倾斜角α为或.【点睛】本题考查参数方程化普通方程,极坐标方程化直角坐标方程,考查直线与曲线的关系,属于中档题.20、(1);(2)【解析】
(1)将代入可得集合B,解对数不等式可得集合A,由并集运算即可得解.(2)由可知B为A的子集,即;当符合题意,当B不为空集时,由不等式关系即可求得的取值范围.【详解】(1)若,则,依题意,故;(2)因为,故;若,即时,,符合题意;若,即时,,解得;综上所述,实数的取值范围为.【点睛】本题考查了集合的并集运算,由集合的包含关系求参数的取值范围,注意讨论集合是否为空集的情况,属于基础题.21、(1)无关;(2),.【解析】
(1)由频率分布直方图可知,在抽取的100人中,“体育迷”有25人,从而可得列联表如下:非体育迷体育迷合计男301545女451055合计7525100将22列联表中的数据代入公式计算,得.因为3.030<3.841,所以我们没有充分理由认为“体育迷”与性别有关.(2)由频率分布直方图知抽到“体育迷”的频率为0.25,将频率视为概率,即从观众中抽取一名“体育迷”的概率.由题意知X~B(3,),从而X的分布列为X0123PE(X)=np==.D(X)=np(1-p)=22、(1)(2)【解析】
(1)先求出圆心到直线的距离为,再根据得到,解之即得a的值,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 兰州信息科技学院《亲子教育活动设计》2023-2024学年第一学期期末试卷
- 江西农业大学南昌商学院《税收》2023-2024学年第一学期期末试卷
- 湖南艺术职业学院《误差理论与测绘平差基础》2023-2024学年第一学期期末试卷
- 衡水学院《有机化学B》2023-2024学年第一学期期末试卷
- 重庆交通大学《元典阅读与笔记2》2023-2024学年第一学期期末试卷
- 浙江商业职业技术学院《形体与舞蹈(一)》2023-2024学年第一学期期末试卷
- 中国戏曲学院《小企业会计准则》2023-2024学年第一学期期末试卷
- 长春汽车工业高等专科学校《自然地理学理论与方法》2023-2024学年第一学期期末试卷
- 浙江纺织服装职业技术学院《数据分析与SPSS实现》2023-2024学年第一学期期末试卷
- 食品卫生安全监管技术应用
- 2025年山东光明电力服务公司招聘笔试参考题库含答案解析
- 《神经发展障碍 儿童社交沟通障碍康复规范》
- 2025年中建六局二级子企业总经理岗位公开招聘高频重点提升(共500题)附带答案详解
- 2024年5月江苏省事业单位招聘考试【综合知识与能力素质】真题及答案解析(管理类和其他类)
- 注浆工安全技术措施
- 2024年世界职业院校技能大赛“食品安全与质量检测组”参考试题库(含答案)
- 2023上海高考英语词汇手册单词背诵默写表格(复习必背)
- 人民军队历史与优良传统(2024)学习通超星期末考试答案章节答案2024年
- DB11T 641-2018 住宅工程质量保修规程
- 幼儿园幼儿营养食谱手册
- 光伏工程施工组织设计
评论
0/150
提交评论