2022年湖北省十堰市郧县青山镇中学高一数学文上学期摸底试题含解析_第1页
2022年湖北省十堰市郧县青山镇中学高一数学文上学期摸底试题含解析_第2页
2022年湖北省十堰市郧县青山镇中学高一数学文上学期摸底试题含解析_第3页
2022年湖北省十堰市郧县青山镇中学高一数学文上学期摸底试题含解析_第4页
2022年湖北省十堰市郧县青山镇中学高一数学文上学期摸底试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022年湖北省十堰市郧县青山镇中学高一数学文上学期摸底试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.下列函数中,在区间(0,+∞)上为增函数的是().A. B. C. D.参考答案:A解:项、在上为增函数,符合题目要求.故选.2.函数y=的定义域是()A.[﹣1,+∞) B.[﹣1,0) C.(﹣1,+∞) D.[﹣1,0)∪(0,+∞)参考答案:D【考点】函数的定义域及其求法.【分析】由x+1≥0且x≠0,解不等式即可得到所求定义域.【解答】解:由x+1≥0且x≠0,可得x≥﹣1且x≠0,即有定义域为[﹣1,0)∪(0,+∞),故选:D.【点评】本题考查函数的定义域的求法,注意偶次根式和分式的含义,属于基础题.3.三个数,,之间的大小关系是(

)A.a<c<b

B.a<b<c

C.b<a<c

D.b<c<a参考答案:C∵,,∴故选C

4.已知函数,则的值为(

)A.

B.

C.

D.参考答案:A略5.{an}是等差数列,且a1+a4+a7=45,a2+a5+a8=39,则a3+a6+a9的值是()A.24B.27C.30

D.33参考答案:D6.半径为R的半圆卷成一个圆锥,它的体积是(

)A. B. C. D.参考答案:A【分析】根据圆锥的底面圆周长等于半圆弧长可计算出圆锥底面圆半径,由勾股定理可计算出圆锥的高,再利用锥体体积公式可计算出圆锥的体积.【详解】设圆锥的底面圆半径为,高为,则圆锥底面圆周长为,得,,所以,圆锥的体积为,故选:A.【点睛】本题考查圆锥体积的计算,解题的关键就是要计算出圆锥底面圆的半径和高,解题时要从已知条件列等式计算,并分析出一些几何等量关系,考查空间想象能力与计算能力,属于中等题.

7.已知角是第三象限角,且,则(

)A. B. C. D.参考答案:A【分析】根据同角三角函数关系式中的商关系,结合,可以求出的值,最后根据同角的三角函数关系式和二次根式的性质进行求解即可.【详解】两边平方得;,解得或,因为角是第三象限角,所以有,因此,所以.故选:A【点睛】本题考查了同角三角函数关系式的应用,考查了数学运算能力.

8.已知tan=,的值为()A.﹣7 B.8 C.﹣8 D.7参考答案:B【考点】GH:同角三角函数基本关系的运用.【分析】由条件利用同角三角函数的基本关系,求得要求式子的值.【解答】解:∵tan=,===8,故选:B.9.某学校为了解三年级、六年级、九年级这三个年级学生的视力情况,拟从中抽取一定比例的学生进行调杳,则最合理的抽样方法是()A.抽签法 B.系统抽样法 C.分层抽样法 D.随机数法参考答案:C【考点】分层抽样方法.【专题】对应思想;定义法;概率与统计.【分析】若总体由差异明显的几部分组成时,经常采用分层抽样的方法进行抽样.【解答】解:常用的抽样方法有:简单随机抽样、分层抽样和系统抽样,为了解三年级、六年级、九年级这三个年级之间的学生视力是否存在显著差异,这种方式具有代表性,比较合理的抽样方法是分层抽样.故选:C.【点评】本题考查了分层抽样方法的特征与应用问题,是基本题.10.已知奇函数f(x)在[-1,0]上为单调减函数,又α,β为锐角三角形内角,则(

)A.f(cosα)>f(cosβ) B.f(sinα)>f(sinβ)C.f(sinα)<f(cosβ) D.f(sinα)>f(cosβ)参考答案:C∵奇函数y=f(x)在[?1,0]上为单调递减函数,∴f(x)在[0,1]上为单调递减函数,∴f(x)在[?1,1]上为单调递减函数,又α、β为锐角三角形的两内角,∴,∴,∴,∴.故选C.点睛:(1)在锐角三角形中,,,同理可得:,即锐角三角形中的任意一个角的正弦值大于其它角的余弦值;(2)奇函数图象关于原点对称,单调性在y轴左右两侧相同.二、填空题:本大题共7小题,每小题4分,共28分11.函数的定义域为

;参考答案:12.若函数是奇函数,则为__________

参考答案:213.函数f(x)=x﹣()x+a的零点在区间(1,+∞)上,则实数a的取值范围是.参考答案:a<﹣【考点】函数零点的判定定理.【专题】计算题;函数思想;综合法;函数的性质及应用.【分析】确定函数f(x)=x﹣()x+a单调递增,利用函数f(x)=x﹣()x+a的零点在区间(1,+∞)上,可得f(1)=+a<0,即可求出实数a的取值范围.【解答】解:f′(x)=1﹣()xln>0,∴函数f(x)=x﹣()x+a单调递增,∵函数f(x)=x﹣()x+a的零点在区间(1,+∞)上,∴f(1)=+a<0,∴a<﹣.故答案为:a<﹣.【点评】正确把问题等价转化、熟练掌握利用导数研究函数的单调性是解题的关键.14.计算:

.参考答案:4原式故答案为4

15.已知函数y=f(x)和y=g(x)在[﹣2,2]上的图象如图所示.给出下列四个命题:①方程f[g(x)]=0有且仅有6个根;②方程g[f(x)]=0有且仅有3个根;③方程f[f(x)]=0有且仅有5个根;④方程g[g(x)]=0有且仅有4个根.其中正确的命题的个数为()A.1 B.2 C.3 D.4参考答案:C【考点】函数的图象;复合函数的单调性;函数的值;根的存在性及根的个数判断.【专题】数形结合.【分析】把复合函数的定义域和值域进行对接,看满足外层函数为零时内层函数有几个自变量与之相对应.【解答】解:∵在y为[﹣2,﹣1]时,g(x)有两个自变量满足,在y=0,y为[1,2]时,g(x)同样都是两个自变量满足∴①正确∵f(x)值域在[﹣1,2]上都是一一对应,而在值域[0,1]上都对应3个原像,∴②错误同理可知③④正确故选C.【点评】本题考查了复合函数的对应问题,做题时注意外层函数的定义域和内层函数值域的对接比较.16.若函数f(x)=x2+为偶函数,则实数a=

.参考答案:1【考点】函数奇偶性的性质.【分析】根据偶函数的定义建立方程关系进行求解即可.【解答】解:∵函数f(x)=x2+为偶函数,∴f(﹣x)=f(x),即x2﹣=x2+,则=0,则a=1,故答案为:117.在△ABC中,∠C是钝角,设则的大小关系是___________________________。参考答案:略三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.某市电视台为了宣传举办问答活动,随机对该市15~65岁的人群抽样了n人,回答问题计结果如下图表所示:(1)分别求出a,b,x,y的值;(2)从第2,3,4组回答正确的人中用分层抽样的方法抽取6人,则第2,3,4组每组各抽取多少人?(3)在(2)的前提下,电视台决定在所抽取的6人中随机抽取2人颁发幸运奖,求所抽取的人中第2组至少有1人获得幸运奖的概率.参考答案:(1)18,9,0.9,0.2(2)2,3,1(3)试题分析:(1)根据第一组的答对的人数和概率,计算得第一组的人数,根据频率可计算的总人数为,再根据频率分布直方图可计算得;(2)三组答对人数比为,故分别抽取人;(3)利用列举法求得概率为.试题解析:(1)第1组人数,所以,第2组人数,所以,第3组人数,所以,第4组人数,所以,第5组人数,所以,(2)第2,3,4组回答正确的人的比为,所以第2,3,4组每组应各依次抽取2人,3人,1人.(3)记抽取的6人中,第2组的记为,第3组的记为,第4组的记为,则从6名学生中任取3名的所有可能的情况有20种,它们是:,其中记“第3组至少有1人”为事件,则的对立事件是“第3组的没有选到”,其基本事件个数是1个,即,故所求概率为.19.数列{an}的前n项和Sn满足.(1)求证:数列是等比数列;(2)若数列{bn}为等差数列,且,求数列的前n项Tn.参考答案:(1)见证明;(2)【分析】(1)利用与的关系,即要注意对进行讨论,再根据等比数列的定义,证明为常数;(2)利用错位相减法对数列进行求和.【详解】解(1)当时,,所以因为①,所以当时,②,①-②得,所以,所以,所以是首项为2,公比为2的等比数列.(2)由(1)知,,所以,因为,所以,设的公差为,则,所以所以,,所以,则,以上两式相减得:,所以.【点睛】数列为等差数列,数列为等比数列,则数列的求和可采用错位相减法求和,注意求和后要保证常数的准确性.20.(1)计算(本小题7分)

(2).(本小题7分)已知,求值:参考答案:略21.(本小题满分12分)设集合,集合.(1)当时,求和(2)若,求实数的取值范围.参考答案:(1)依题可知,当时,

所以,(2)由,可知

当时,,显然,符合题意;当时,,要使,则需

得:综上所述,的取值范围为22.已知函数是定义域为R上的奇函数.(1)求实数t的值;(2)若f(1)>0,不等式f(x2+bx)+f(4﹣x)>0在x∈R上恒成立,求实数b的取值范围;(3)若且[1,+∞)上最小值为﹣2,求m的值.参考答案:【考点】函数恒成立问题;函数奇偶性的性质.【分析】(1)由已知可得f(0)=0,求得t值,已知f(x)为奇函数,则t值可求;(2)由f(x)的解析式可得f(x)=是R上的单调递增,结合奇偶性把不等式f(x2+bx)+f(4﹣x)>0转化为关于x的一元二次不等式,由判别式小于0求得实数b的取值范围;(3))由f(1)=求得a值,则h(x)=,令u=f(x)=,则g(u)=u2﹣2mu+2,然后利用函数的单调性结合配方法求得f(x)在[1,+∞)上最小值,进一步求得m的值.【解答】解:(1)∵f(x)是定义域为R的奇函数,∴f(0)=0,∴1+(1﹣t)=0,得t=2,此时f(x)=,满足f(﹣x)=,f(x)为奇函数;(2)由(1)知:f(x)=,∵f(1)>0,∴a﹣<0,又a>0且a≠1,∴a>1,∴f(x)=是R上的单调递增,又f(x)是定义域为R上的奇函数,∴f(x2+bx)+f(4﹣x)>0?f(x2+bx)>f(x﹣4)?x2+bx>x﹣4.即x2+bx﹣x+4>0在x∈R上恒成立,∴△=(b﹣1)2﹣16<0,即﹣3<b<5,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论