版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022年山东省临沂市岸堤中学高一数学文摸底试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.已知偶函数f(x)在(﹣∞,0)上单调递增,对于任意x1<0,x2>0,若|x1|<|x2|,则有()A.f(﹣x1)>f(﹣x2) B.f(﹣x1)<f(﹣x2) C.﹣f(﹣x1)>f(﹣x2) D.﹣f(﹣x1)<f(﹣x2)参考答案:A【考点】奇偶性与单调性的综合.
【专题】综合题;转化思想;数形结合法.【分析】偶函数f(x)在(﹣∞,0)上单调递增,知其在(0,+∞)上单调递减,其图象的特征是自变量的绝对值越大,函数值越小,由此特征即可选出正确选项.【解答】解:偶函数f(x)在(﹣∞,0)上单调递增,知其在(0,+∞)上单调递减,其图象的特征是自变量的绝对值越大,函数值越小,∵对于任意x1<0,x2>0,有|x1|<|x2|,∴f(﹣x1)=f(x1)>f(﹣x2)=f(x2)观察四个选项,故选A.【点评】本题考点是函数的奇偶性,考查偶函数的图象的性质,本题在求解时综合利用函数的奇偶性与单调性得出判断策略,轻松判断出结论,方法巧妙!2.若直线y=kx﹣2与抛物线y2=8x交于A,B两个不同的点,且AB的中点的横坐标为2,则k=()A.2 B.﹣1 C.2或﹣1 D.1±参考答案:A【考点】抛物线的简单性质.【专题】计算题;方程思想;综合法;圆锥曲线的定义、性质与方程.【分析】联立直线y=kx﹣2与抛物线y2=8x,消去y,可得x的方程,由判别式大于0,运用韦达定理和中点坐标公式,计算即可求得k=2.【解答】解:联立直线y=kx﹣2与抛物线y2=8x,消去y,可得k2x2﹣(4k+8)x+4=0,(k≠0),判别式(4k+8)2﹣16k2>0,解得k>﹣1.设A(x1,y1),B(x2,y2),则x1+x2=,由AB中点的横坐标为2,即有=4,解得k=2或﹣1(舍去),故选:A.【点评】本题考查抛物线的方程的运用,联立直线和抛物线方程,消去未知数,运用韦达定理和中点坐标公式,注意判别式大于0,属于中档题.3.数学老师给出一个定义在R上的函数f(x),甲、乙、丙、丁四位同学各说出了这个函数的一条性质:甲:在(-∞,0)上函数单调递减;
乙:在[0,+∞]上函数单调递增;丙:函数f(x)的图象关于直线x=1对称;丁:f(0)不是函数的最小值.老师说:你们四个同学中恰好有三个人说的正确,则说法错误的同学是(
)A.甲 B.乙 C.丙 D.丁参考答案:B分析】先假设四个人中有两个人正确,由此推出矛盾,由此得到假设不成立,进而判断出说法错误的同学.【详解】先假设甲、乙正确,由此判断出丙、丁错误,与已知矛盾,由此判断甲、乙两人有一人说法错误,丙、丁正确.而乙、丙说法矛盾,由此确定乙说法错误.【点睛】本小题主要考查逻辑推理能力,涉及到函数性质,包括单调性、对称性和最值,属于基础题.4.设是两条不同的直线,是两个不同的平面,则下列命题正确的是(
)A.若,则B.若,则C.若,则D.若,则参考答案:D【分析】根据线面平行的性质、面面平行的性质、面面垂直的性质、面面垂直的判定定理对四个选项,逐一判断,最后选出正确答案.【详解】选项A:直线m,n还可以异面、相交,故本命题是假命题;选项B:直线m,n可以是异面直线,故本命题是假命题;选项C:当时,若,,,才能推出,故本命题是假命题;选项D:因为,,所以,而,所以有,故本命题是真命题,因此本题选D.【点睛】本题考查了线面平行的性质、面面平行的性质、面面垂直的判定与性质,考查了空间想象能力.5.已知一个确定的二面角α-l-β,a和b是空间的两条异面直线,在下面给出的四个条件中,能使a和b所成的角也确定的是()A.a∥α且b∥β
B.a∥α且b⊥βC.a?α且b⊥β
D.a⊥α且b⊥β参考答案:D6.若是方程的解,则属于区间
(
)
A.
B.
C.
D.
参考答案:C略7.已知向量,,则与的夹角是
(
)A.
B.
C.
D.参考答案:C略8.在等比数列中,,则(
).A.4
B.16
C.8
D.32参考答案:B等比数列的性质可知,故选.9.,f(x)>0恒成立,则的取值范围(
)A
B
C
D参考答案:A略10.如图示,在圆O中,若弦,,则的值为()A.-16
B.
-2
C.32
D.16参考答案:C略二、填空题:本大题共7小题,每小题4分,共28分11.设l,m,n为三条不同的直线,,为两个不同的平面,下列命题中正确的是______.(1)若,,,则;(2)若,,,则;(3)若,,,,则;(4)若,,,则.参考答案:(1)【分析】利用线线平行的传递性、线面垂直的判定定理判定。【详解】(1),,,则,正确(2)若,,,则,错误(3)若,则不成立,错误(4)若,,,则,错误【点睛】本题主要考查线面垂直的判定定理判定,考查了空间想象能力,属于中档题.12.已知数列通项为,则
.参考答案:-100813.若sin(α﹣β)cosα﹣cos(α﹣β)sinα=,则sinβ=.参考答案:﹣【考点】GP:两角和与差的余弦函数.【分析】利用两角差的正弦公式及诱导公式即可求得﹣sinβ=,得sinβ=﹣.【解答】解:由两角差的正弦公式可知:sin(α﹣β)cosα﹣cos(α﹣β)sinα=sin=sin(﹣β)=﹣sinβ,又sin(α﹣β)cosα﹣cos(α﹣β)sinα=,∴﹣sinβ=,则sinβ=﹣,故答案为:﹣.14.在正方体中,平面与平面所成的锐二面角的大小是
.参考答案:
15.甲,乙两楼相距30m,从乙楼底望甲楼顶的仰角为60°,从甲楼顶望乙楼顶的俯角为30°,则乙楼的楼高为
m.参考答案:
16.数列,的通项公式的是
。参考答案:略17.直线l1:y=2x与直线l2:ax+by+c=0(abc≠0)相互垂直,当a,b,c成等差数列时,直线l1,l2与y轴围成的三角形的面积S=.参考答案:【考点】IJ:直线的一般式方程与直线的垂直关系.【分析】直线l1:y=2x与直线l2:ax+by+c=0(abc≠0)相互垂直,可得2×(﹣)=﹣1,化为b=2a.当a,b,c成等差数列时,2b=a+c.由ax+by+c=0(abc≠0),令x=0,解得y.联立,解得x=.即可直线l1,l2与y轴围成的三角形的面积S.【解答】解:直线l1:y=2x与直线l2:ax+by+c=0(abc≠0)相互垂直,∴2×(﹣)=﹣1,化为b=2a.当a,b,c成等差数列时,2b=a+c.∴b=2a,c=3a.由ax+by+c=0(abc≠0),令x=0,解得y=﹣.联立,解得x=.直线l1,l2与y轴围成的三角形的面积S=×==.故答案为:.三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.如图,矩形草坪AMPN中,点C在对角线MN上.CD垂直于AN于点D,CB垂直于AM于点B,|CD|=|AB|=3米,|AD|=|BC|=2米,设|DN|=x米,|BM|=y米.求这块矩形草坪AMPN面积的最小值.参考答案:【考点】基本不等式在最值问题中的应用.【分析】由题意,表示出矩形的面积,利用基本不等式,即可求得结论.【解答】解:由题意….SAMPN=(x+2)(y+3)=xy+3x+2y+6=12+3x+2y….….当且仅当3x=2y,即x=2,y=3时取得等号.….面积的最小值为24平方米.
….19.求下列各函数的导数。
(1)
(2)参考答案:(1)(2)
20.数列的前n项和记为,点(n,)在曲线()上(1)求数列的通项公式;(2)设,求数列的前n项和的值参考答案:(1)由条件得()当当也适合为通项公式(2)、2两式相减得,解得21.已知数列{an}是等差数列,且a3=5,a6=11,数列{bn}是公比大于1的等比数列,且b1=1,b3=9.(1)求数列{an}和{bn}的通项公式;(2)设cn=an﹣bn,求数列{cn}的前n项和Sn.参考答案:【考点】数列的求和;数列递推式.【分析】(Ⅰ)利用等差数列的通项公式由已知条件求出首项和公比,由此能求出等差数列{an}的通项公式;由数列{bn}是以b1=3为首项,公比为3的等比数列,能求出{bn}的通项公式.(Ⅱ)由cn=(2n﹣1)﹣3n,利用分组求和法能求出数列{cn}的前n项和Sn.【解答】解:(Ⅰ)设等差数列{an}的公差为d,∵a3=5,a6=11,∴得,解得a1=1,d=2,∴an=1+(n﹣1)×2=2n﹣1,∵b1=1,b3=9.∴q2b1=9.即q2=9,∵q>1,∴q=3,即数列{bn}是以b1=3为首项,公比为3的等比数列,∴.(Ⅱ)∵cn=an﹣bn,∴cn=(2n﹣1)﹣3n,∴Sn=1+3+5+7+…+(2n﹣1)﹣(3+32+33+…+3n)=﹣=n2﹣(3n﹣1).22.已知函数f(x)=x(x﹣m)2在x=2处有极大值.(1)求实数m的值;(2)若关于x的方程f(x)=a有三个不同的实根,求实数a的取值范围.参考答案:【考点】54:根的存在性及根的个数判断;6D:利用导数研究函数的极值.【分析】(1)令f′(2)=0解出m,再进行验证x=2是否为极大值点即可;(2)求出f(x)的单调性和极值,即可得出a的范围.【解答】解:(1)f'(x)=3x2﹣4mx+m2,由已知f'(2)=12﹣8m+m2=0,∴m=2,或m=6,当m=2时,f'(x)=3x2﹣8x+4=(3x﹣2)(x﹣2),∴f(x)在
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二四年度租赁合同:豪华游轮租赁与旅游服务3篇
- 2024年度珠宝设计与制造合作合同2篇
- 二零二四年度法律服务与法律顾问合同2篇
- 二零二四年度保险合同保险标的和保险责任2篇
- 顶管工程劳务施工合同
- 二零二四年度物流服务合同详细条款及标的说明3篇
- 2024年度卫星通信技术服务与租赁合同3篇
- 奇石买卖合同
- 2023年调脂抗动脉粥样硬化药资金需求报告
- 2024年度物联网技术应用合同(2024版)2篇
- 纪录片创作与理论
- (HAF603)民用核安全设备焊工认证考试题库 (单选题)
- 小学五项管理家长会课件
- 微机原理与接口技术-基于8086和Proteus仿真(第3版)习题答案
- 10米深基坑施工方案
- 广东省广州市黄埔区2023-2024学年数学四年级第一学期期末达标检测试题含答案
- 开开心心上学去第一课时(说课稿)全国通用一年级下册综合实践活动
- 中药外敷疼痛方剂整理
- 26 手术台就是阵地教学课件
- 舞台机械设备安装调试方案
- 广州中医药大学辅导员考试题库
评论
0/150
提交评论