版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
山东省济宁市雄风武校中学高一数学文月考试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.将直线y=2x绕原点逆时针旋转90°,再向右平移1个单位,所得到的直线为()A. B. C.y=2x﹣2 D.参考答案:A【考点】函数的图象.【分析】根据两条垂直的直线斜率积为﹣1,结合函数图象的平移变换法则,可得变换后直线对应的解析式.【解答】解:将直线y=2x绕原点逆时针旋转90°,可得:直线y=x的图象,再向右平移1个单位,可得:y=(x﹣1),即的图象,故选:A【点评】本题考查的知识点是函数的图象,熟练掌握函数图象的旋转变换法则及平移变换法则,是解答的关键.2.如果变量满足条件上,则的最大值(
)A.
B.
C.
D.参考答案:D3.在边长为的等边三角形中,,则等于(
)A、
B、
C、
D、参考答案:C略4.在锐角中,角成等差数列,且,则的取值范围为【
】.A.
B.
C.
D.参考答案:A5.已知角终边上一点,则下列关系式中一定正确的是(
)
(A)
(B)
(C)
(D)参考答案:D略6.已知f(x)=是R上的单调递增函数,则实数a的取值范围为(
)
A.
B.[4,8)
C.(4,8)
D.(1,8)参考答案:B略7.如图,在,是上的一点,若,则实数的值为(
)A.
B.
C.
D.参考答案:C8.已知{an}是公差不为0的等差数列,且an≥0;又定义bn=+
(1≤n≤2003),则{bn}的最大项是(
)(A)b1001
(B)b1002
(C)b2003
(D)不能确定的参考答案:B9.下列函数是偶函数且在区间(0,+∞)上单调递减的是(
)A.
B.
C.
D.参考答案:A逐一考查所给函数的性质:A.,函数是偶函数,在区间上单调递增;B.,函数是非奇非偶函数,在区间上单调递增;C.,函数是偶函数,在区间上单调递增;D.,函数是非奇非偶函数,在区间上不具有单调性;本题选择A选项.
10.函数f(x)=sin(2x+φ)|φ|<)的图象向左平移个单位后关于原点对称,则φ等于() A. B.﹣ C. D.参考答案:D【考点】函数y=Asin(ωx+φ)的图象变换. 【专题】三角函数的图像与性质. 【分析】由条件根据函数y=Asin(ωx+φ)的图象变换规律,正弦函数的图象的对称性可得+φ=kπ,k∈z,由此根据|φ|<求得φ的值. 【解答】解:函数f(x)=sin(2x+φ)φ|<)的图象向左平移个单位后,得到函数y=sin[2(x+)+φ]=sin(2x++φ)的图象, 再根据所得图象关于原点对称,可得+φ=kπ,k∈z,∴φ=﹣, 故选:D. 【点评】本题主要考查函数y=Asin(ωx+φ)的图象变换规律,正弦函数的图象的对称性,属于基础题. 二、填空题:本大题共7小题,每小题4分,共28分11.若幂函数y=f(x)的图象经过点(9,),则f(25)的值是.参考答案:【考点】幂函数的单调性、奇偶性及其应用.【专题】计算题;待定系数法.【分析】设出幂函数f(x)=xα,α为常数,把点(9,)代入,求出待定系数α的值,得到幂函数的解析式,进而可求f(25)的值.【解答】解:∵幂函数y=f(x)的图象经过点(9,),设幂函数f(x)=xα,α为常数,∴9α=,∴α=﹣,故f(x)=,∴f(25)==,故答案为:.【点评】本题考查幂函数的定义,用待定系数法求函数的解析式,以及求函数值的方法.12.已知,,则的最大值是
.参考答案:13.在△ABC中,若则△ABC的形状是_________参考答案:钝角三角形略14.已知函数f(x)是一次函数,且,则一次函数f(x)的解析式为________.参考答案:或【分析】根据题意设出函数的解析式,再根据,即可得出的解析式.【详解】函数是一次函数,设.,,解得或,故答案为:或.【点睛】本题主要考查的是函数的解析式,利用待定系数法求解析式,考查学生的计算能力,是基础题.15.若f(x)是一次函数,且f[f(x)]=4x﹣1,则f(x)=.参考答案:f(x)=2x﹣或﹣2x+1【考点】函数解析式的求解及常用方法.【专题】计算题.【分析】利用待定系数法求解该函数的解析式是解决本题的关键.结合着复合函数表达式的求解,根据多项式相等即对应各项的系数相等得出关于一次项系数和常数项的方程组,通过方程思想求解出该函数的解析式.【解答】解:设f(x)=kx+b(k≠0),则f[f(x)]=f(kx+b)=k(kx+b)+b=k2x+kb+b=4x﹣1,根据多项式相等得出,解得或.因此所求的函数解析式为:f(x)=2x﹣或﹣2x+1.故答案为:f(x)=2x﹣或﹣2x+1.【点评】本题考查函数解析式的求解,考查确定函数解析式的待定系数法.学生只要设出一次函数的解析式的形式,寻找关于系数的方程或方程组,通过求解方程是不难求出该函数的解析式的.属于函数中的基本题型.16.12.定义运算:如,则函数的值域为
A.
B.
C.
D.参考答案:A略17.如图,正方体ABCD-A1B1C1D1中,AB=2,点E为AD的中点,点F在CD上.若EF∥平面AB1C,则线段EF的长度等于________.参考答案:三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.已知直线与圆C:x2+y2=4相交于A,B两点.(1)求|AB|;(2)求弦AB所对圆心角的大小.参考答案:【考点】J9:直线与圆的位置关系.【分析】(1)联立方程组,求出A,B的坐标,由此能求出|AB|.(2)由|AB|=|OB|=|OA|=2,得△AOB是等边三角形,由此能求出弦AB所对圆心角的大小.【解答】解:(1)如图所示,由,消去y,得x2﹣3x+2=0,解得x1=2,x2=1,∴,∴.(2)又∵|OB|=|OA|=2,∴△AOB是等边三角形,∴19.在面积为的△ABC中,角A、B、C所对应的边为成等差数列,B=30°.(1)求;(2)求边。
参考答案:解:(1)∵,又,∴,∴。
……6分(2)∵B=30°,∴,∴,
……10分∴,又由成等差数列知,而,代入上式得,∴。
……14分20.如图,在四棱锥P﹣ABCD中,底面ABCD是正方形,侧棱PD⊥底面ABCD,PD=DC=2,E是PC的中点,作EF⊥PB交PB于点F.(1)证明:PA∥平面EDB;(2)证明:PB⊥平面EFD.参考答案:【考点】直线与平面平行的判定;棱柱、棱锥、棱台的体积;直线与平面垂直的判定.【专题】证明题.【分析】(1)由题意连接AC,AC交BD于O,连接EO,则EO是中位线,证出PA∥EO,由线面平行的判定定理知PA∥平面EDB;(2)由PD⊥底面ABCD得PD⊥DC,再由DC⊥BC证出BC⊥平面PDC,即得BC⊥DE,再由ABCD是正方形证出DE⊥平面PBC,则有DE⊥PB,再由条件证出PB⊥平面EFD.【解答】解:(1)证明:连接AC,AC交BD于O.连接EO.∵底面ABCD是正方形,∴点O是AC的中点.∴在△PAC中,EO是中位线,∴PA∥EO,∵EO?平面EDB,且PA?平面EDB,∴PA∥平面EDB.
(2)证明:∵PD⊥底面ABCD,且DC?底面ABCD,∴PD⊥BC.∵底面ABCD是正方形,∴DC⊥BC,∴BC⊥平面PDC.∵DE?平面PDC,∴BC⊥DE.又∵PD=DC,E是PC的中点,∴DE⊥PC.∴DE⊥平面PBC.∵PB?平面PBC,∴DE⊥PB.又∵EF⊥PB,且DE∩EF=E,∴PB⊥平面EFD.【点评】本题考查了线线、线面平行和垂直的相互转化,通过中位线证明线线平行,再由线面平行的判定得到线面平行;垂直关系的转化是由线面垂直的定义和判定定理实现.21.已知函数.(I)求的最小正周期及最大值;
(II)若,且,求的值.参考答案:解:(I)因为===,所以的最小正周期为,最大值为.(II)因为,所以.
因为,所以,所以,故.
略22.在平面直角坐标系xOy中,已知圆心在x轴上、半径为2的圆C位于y轴右侧,且与直线相切.(1)求圆C的方程;(2)在圆C上,是否存在点M(m,n),使得直线l:mx+ny=1与圆O:x2+y2=1相交于不同的两点A,B,且△OAB的面积最大?若存在,求出点M的坐标及对应的△OAB的面积;若不存在,请说明理由.参考答案:【考点】圆的标准方程;点到直线的距离公式.【分析】(1)设圆心是(x0,0)(x0>0),由直线于圆相切可知,圆心到直线的距离等于半径,利用点到直线的距离公式可求x0,进而可求圆C的方程(2)把点M(m,n)代入圆的方程可得,m,n的方程,结合原点到直线l:mx+ny=1的距离
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《腾讯微博操作指南》课件
- 甘孜职业学院《建筑工程制图》2023-2024学年第一学期期末试卷
- 甘肃政法大学《有限元分析》2023-2024学年第一学期期末试卷
- 《漂亮的热带鱼》课件
- 《小儿发热的护理》课件
- 三年级数学上册七年月日看日历说课稿北师大版
- 三年级科学上册第1单元水7混合与分离教案2教科版
- 2022年-2023年三支一扶之公共基础知识基础试题库和答案要点
- 小学生优教课件下载
- 考评员培训课件
- 2024年人教版八年级语文上册期末考试卷(附答案)
- DB34-T 4859-2024 农村河道清淤规范
- 广东省深圳市南山区2023-2024学年六年级上学期期末科学试卷
- 2023北京东城区初二上期末考历史试卷及答案
- 2流动人员人事档案转递通知单存根
- 天罡仪表CR40系列数据集中器用户手册
- PBL系列课程-胸痛临床案例
- 普外科电子病历模板——腹部闭合性损伤
- 【方案】银行操作风险管理(BORMP)解决方案(精华版)
- 六十仙命配二十四山吉凶选择一览表
- 生产过程控制程序(完整版)
评论
0/150
提交评论