版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
湖南省益阳市城西中学高一数学文下学期摸底试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.正方形ABCD的边长为2,点E、F分别在边AB、BC上,且AE=1,BF=,将此正方形沿DE、DF折起,使点A、C重合于点P,则三棱锥P-DEF的体积为()A.
B.C.
D.参考答案:B2.若函数在区间上是单调递减的,那么实数的取值范围是(
)A
B
C
D
参考答案:A3.函数的零点所在的区间为
A.(0,1)
B.(1,2)
C.(2,3)
D.(3,4)参考答案:B4.函数的定义域是()A. B. C. D.参考答案:B试题分析:,故选B.考点:函数的定义域.5.与角﹣终边相同的角是() A. B. C. D. 参考答案:C6.已知,则(
)A.2
B.3
C.4
D.5参考答案:D7.已知,则角是
(
)A.第一或第二象限
B.第二或第三象限
C.第三或第四象限
D.第一或第四象限参考答案:C略8.已知f(x)是定义在R上的偶函数,对任意x∈R,都有f(2+x)=﹣f(x),且当x∈[0,1]时在f(x)=﹣x2+1,若a[f(x)]2﹣bf(x)+3=0在[﹣1,5]上有5个根xi(i=1,2,3,4,5),则x1+x2+x3+x4+x5的值为()A.7 B.8 C.9 D.10参考答案:D【考点】函数的零点与方程根的关系;数列的求和.【分析】确定f(x)是周期为4的函数,f(x)关于(1,0)对称,从而可得f(x)=﹣1或0<f(x)<1.f(x)=﹣1时,x=2;0<f(x)<1时,根据二次函数的对称性可得四个根的和为0+8=8,即可得到结论.【解答】解:∵f(x)是定义在R上的偶函数,当0≤x≤1时,f(x)=﹣x2+1∴当﹣1≤x≤0时,0≤﹣x≤1,f(﹣x)=﹣(﹣x)2+1=f(x),又f(x+2)=﹣f(x),∴f(x+4)=﹣f(x+2)=f(x),∴f(x)是周期为4的函数,∵f(x)是偶函数,对任意x∈R,都有f(2+x)=﹣f(x),∴f(2+x)+f(﹣x)=0,以x﹣1代x,可得f(1+x)+f(1﹣x)=0,∴f(x)关于(1,0)对称,f(x)在[﹣1,5]上的图象如图∵a[f(x)]2﹣bf(x)+3=0在[﹣1,5]上有5个根xi(i=1,2,3,4,5),结合函数f(x)的图象可得f(x)=﹣1或0<f(x)<1当f(x)=﹣1时,x=2;0<f(x)<1时,根据二次函数的对称性可得四个根的和为0+8=8∴x1+x2+x3+x4+x5的值为10故选D.9.已知实数x,y满足0≤x≤2π,|y|≤1则任意取期中的x,y使y>cosx的概率为() A. B. C. D. 无法确定参考答案:B10.若,则对说法正确的是A.有最大值 B.有最小值C.无最大值和最小值
D.无法确定参考答案:B二、填空题:本大题共7小题,每小题4分,共28分11.函数f(x)=(x﹣1)2﹣1的值域为
.参考答案:[﹣1,+∞)【考点】函数的值域.【分析】根据二次函数的图象及性质求解即可.【解答】解:函数f(x)=(x﹣1)2﹣1,开口向上,对称轴x=1,当x=1时,函数f(x)取得最小值为﹣1,故函数f(x)=(x﹣1)2﹣1的值域为:[﹣1,+∞),故答案为:[﹣1,+∞).12.将函数y=sin(2x﹣)的图象先向左平移个单位,再将图象上各点的横坐标变为原来的倍(纵坐标不变),那么所得图象的解析式为y=
.参考答案:sin(4x+)
【考点】函数y=Asin(ωx+φ)的图象变换.【分析】先求函数y=sin(2x﹣)的图象先向左平移,图象的函数表达式,再求图象上所有的点的横坐标变为原来的倍(纵坐标不变),则所得到的图象对应的函数解析式.【解答】解:将函数y=sin(2x﹣)的图象先向左平移,得到函数y=sin[2(x+)﹣]=sin(2x+)的图象,将所得图象上所有的点的横坐标变为原来的倍(纵坐标不变),则所得到的图象对应的函数解析式为:y=sin(4x+)故答案为:sin(4x+).13.若函数的定义域为,值域为,则的图象可能是
(填序号).1
②
③
④参考答案:②14.已知集合A={x∈R|ax2-3x+2=0,a∈R},若A中元素至多有1个,则a的取值范围是
参考答案:a=0或a≥15.若角的终边落在射线上,则________.参考答案:016.函数的定义域是
.参考答案:(1,5]17.已知等边三角形ABC的边长为,M,N分别为AB,AC的中点,沿MN将△ABC折成直二面角,则四棱锥A﹣MNCB的外接球的表面积为
.参考答案:52π【考点】LG:球的体积和表面积.【分析】折叠为空间立体图形,得出四棱锥A﹣MNCB的外接球的球心,利用平面问题求解得出四棱锥A﹣MNCB的外接球半径R,则R2=AF2+OF2=13,求解即可.【解答】解:由,取BC的中点E,则E是等腰梯形MNCB外接圆圆心.F是△AMN外心,作OE⊥平面MNCB,OF⊥平面AMN,则O是四棱锥A﹣MNCB的外接球的球心,且OF=DE=3,AF=2.设四棱锥A﹣MNCB的外接球半径R,则R2=AF2+OF2=13,所以表面积是52π.故答案为:52π.三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.如图,在四棱锥P-ABCD中,底面ABCD是菱形,对角线AC,BD交于点O.(Ⅰ)若AC⊥PD,求证:AC⊥平面PBD;(Ⅱ)若平面PAC⊥平面ABCD,求证:PB=PD;(Ⅲ)在棱PC上是否存在点M(异于点C),使得BM∥平面PAD?说明理由.参考答案:(Ⅰ)详见解析;(Ⅱ)详见解析;(Ⅲ)不存在,理由详见解析.【分析】(Ⅰ)根据菱形的对角线互相垂直,再结合已知垂直条件,利用线面垂直的判定定理可以证明出平面;(Ⅱ)由面面垂直的性质定理和菱形的对角线互相垂直,可以得到,再根据菱形对角线互相平分,这样可以证明出;(Ⅲ)假设存在,根据菱形的性质和已知的平行条件,可以得到平面平面,显然不可能,故假设存在不成立,故不存在,命题得证.【详解】(Ⅰ)证明:因为底面是菱形,所以.因为,,平面,所以平面.(Ⅱ)证明:连接.由(Ⅰ)可知.因为平面平面,所以平面.因为平面,所以.因为底面是菱形,所以.所以.(Ⅲ)解:不存在,证明如下.假设存在点(异于点),使得平面.因为菱形中,,且平面,所以平面.又因为平面,所以平面平面.这显然矛盾!从而,棱上不存在点,使得平面.【点睛】本题考查了菱形的几何性质、线面平行的判定定理、面面平行的判定定理、线面垂直的判定定理,考查了推理论证能力.19.A、B是单位圆O上的点,点A是单位圆与轴正半轴的交点,点在第二象限.记且.(1)求点坐标;
(2)求的值.参考答案:(1)(2)20.已知函数.(1)判断f(x)奇偶性并证明你的结论;(2)解方程.参考答案:(1)为奇函数证明:,所以定义为,关于原点对称……………2分任取,则……………………5分为奇函数……………6分(2)由(1)知…………8分…………………11分综上,不等式解集为………12分21.已知数列{an}为正项等比数列,满足,且,,构成等差数列,数列{bn}满足.(1)求数列{an},{bn}的通项公式;(2)若数列{bn}的前n项和为Sn,数列{cn}满足,求数列{cn}的前n项和Tn.参考答案:(Ⅰ),;(Ⅱ)【分析】(Ⅰ)先设等比
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论