2024届江苏省大丰区万盈镇沈灶初级中学八年级下册数学期末教学质量检测模拟试题含解析_第1页
2024届江苏省大丰区万盈镇沈灶初级中学八年级下册数学期末教学质量检测模拟试题含解析_第2页
2024届江苏省大丰区万盈镇沈灶初级中学八年级下册数学期末教学质量检测模拟试题含解析_第3页
2024届江苏省大丰区万盈镇沈灶初级中学八年级下册数学期末教学质量检测模拟试题含解析_第4页
2024届江苏省大丰区万盈镇沈灶初级中学八年级下册数学期末教学质量检测模拟试题含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届江苏省大丰区万盈镇沈灶初级中学八年级下册数学期末教学质量检测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.己知直角三角形一个锐角60°,斜边长为2,那么此直角三角形的周长是()A. B.3 C.+2 D.+32.正方形具有而菱形不具有的性质是()A.对角线互相平分 B.对角线相等C.对角线平分一组对角 D.对角线互相垂直3.在Rt△ABC中,∠C=90°.如果BC=3,AC=5,那么AB=()A. B.4 C.4或 D.以上都不对4.下列各组数是三角形的三边长,能组成直角三角形的一组数是()A.2,2,3 B.4,6,8 C.2,3, D.,,5.现有一组数据:3、4、5、5、6、6、6、6、7,若去掉其中一个数6则不受影响的是()A.众数 B.中位数 C.平均数 D.众数和中位数6.在平面直角坐标系中,若点P的坐标为(﹣3,2),则点P所在的象限是()A.第一象限 B.第二象限 C.第三象限 D.第四象限7.将若干个小菱形按如图所示的规律排列:第一个图形有5个菱形,第二个图形有9个菱形第三个图形有13个菱形,…,则第9个图形有()个菱形.A.33 B.36 C.37 D.418.关于的方程有实数根,则满足()A. B.且 C.且 D.9.自驾游是当今社会一种重要的旅游方式,五一放假期间小明一家人自驾去灵山游玩,下图描述了小明爸爸驾驶的汽车在一段时间内路程s(千米)与时间t(小时)的函数关系,下列说法中正确的是()A.汽车在0~1小时的速度是60千米/时B.汽车在2~3小时的速度比0~0.5小时的速度快C.汽车从0.5小时到1.5小时的速度是80千米/时D.汽车行驶的平均速度为60千米/时10.如图,在△ABC中,AB=3,AC=4,BC=5,P为边BC上一动点,PE⊥AB于E,PF⊥AC于F,则EF的最小值为()A.2 B.2.2 C.2.4 D.2.511.多项式x2﹣1与多项式x2﹣2x+1的公因式是()A.x﹣1 B.x+1 C.x2﹣1 D.(x﹣1)212.下面哪个点在函数的图象上()A. B. C. D.二、填空题(每题4分,共24分)13.如图,在平行四边形ABCD中,AB=,AD=4,将平行四边形ABCD沿AE翻折后,点B恰好与点C重合,则折痕AE的长为________.14.如图是甲、乙两射击运动员的10次射击训练成绩的折射线统计图,则射击成绩较稳定的是__________(填“甲”或“乙”)。15.若关于x的一元二次方程有两个不相等的实数根,则m的取值范围________16.现用甲、乙两种汽车将吨防洪物资运往灾区,甲种汽车载重吨,乙种汽车载重吨,若一共安排辆汽车运送这些物资,则甲种汽车至少应安排_________辆.17.一元二次方程有实数根,则的取值范围为____.18.方程2(x﹣5)2=(x﹣5)的根是_____.三、解答题(共78分)19.(8分)如图,在中,,点D在的延长线上,连接,E为的中点.请用尺规作图法在边上求作一点F,使得为的中位线.(保留作图痕迹,不写作法)20.(8分)如图,在平行四边形ABCD中,点M为边AD的中点,过点C作AB的垂线交AB于点E,连接ME,已知AM=2AE=4,∠BCE=30°.(1)求平行四边形ABCD的面积;(2)求证:∠EMC=2∠AEM.21.(8分)如图1,在正方形ABCD中,E是BC边上一点,F是BA延长线上一点,AF=CE,连接BD,EF,FG平分∠BFE交BD于点G.(1)求证:△ADF≌△CDE;(2)求证:DF=DG;(3)如图2,若GH⊥EF于点H,且EH=FH,设正方形ABCD的边长为x,GH=y,求y与x之间的关系式.22.(10分)如图,在▱ABCD中,AC、BD交于点O,BD⊥AD于点D,将△ABD沿BD翻折得到△EBD,连接EC、EB.(1)求证:四边形DBCE是矩形;(2)若BD=4,AD=3,求点O到AB的距离.23.(10分)如图,四边形ABCD是平行四边形,对角线AC与BD交于点O,点E是BC边上一点,只用一把无刻度的直尺在AD边上作点F,使得DF=BE.(1)如图1,①请画出满足题意的点F,保留痕迹,不写作法;②依据你的作图,证明:DF=BE.(2)如图2,若点E是BC边中点,请只用一把无刻度的直尺作线段FG,使得FG∥BD,分别交AD、AB于点F、点G.24.(10分)如图,在平面直角坐标系中,为坐标原点,矩形的顶点,将矩形的一个角沿直线折叠,使得点落在对角线上的点处,折痕与轴交于点.(1)求直线所对应的函数表达式;(2)若点在线段上,在线段上是否存在点,使以为顶点的四边形是平行四边形?若存在,请求出点的坐标;若不存在,请说明理由.25.(12分)如图,点E、F分别是▱ABCD的边BC、AD上的点,且BE=DF.(1)试判断四边形AECF的形状;(2)若AE=BE,∠BAC=90°,求证:四边形AECF是菱形.26.计算(1)计算:(2)

参考答案一、选择题(每题4分,共48分)1、D【解析】

根据直角三角形的性质及勾股定理即可解答.【详解】如图所示,Rt△ABC中,AB=2,故故此三角形的周长是+3.故选:D.【点睛】考查勾股定理,含30度角的直角三角形,熟练掌握含30度角的直角三角形的性质是解题的关键.2、B【解析】

根据正方形和菱形的性质逐项分析可得解.【详解】根据正方形对角线的性质:平分、相等、垂直;菱形对角线的性质:平分、垂直,故选B.【点睛】考点:1.菱形的性质;2.正方形的性质.3、A【解析】解:∵∠C=90°,AC=5,BC=3,∴AB===.故选A.4、C【解析】

根据勾股定理的逆定理:如果三角形有两边的平方和等于第三边的平方,那么这个是直角三角形判定则可.【详解】解:A、22+22≠32,根据勾股定理的逆定理不是直角三角形,故此选项错误;

B、42+62≠82,根据勾股定理的逆定理不是直角三角形,故此选项错误;

C、22+32=(2,根据勾股定理的逆定理是直角三角形,故此选项正确;

D、()2+()2≠()2,根据勾股定理的逆定理不是直角三角形,故此选项错误.

故选:C.【点睛】本题考查了勾股定理的逆定理,在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断.5、A【解析】

根据众数、平均数和中位数的定义分别对每一项进行分析,即可得出答案.【详解】A、这组数据3、4、5、5、6、6、6、6、7的众数是6,若去掉其中一个数6时,众数还是6,故本选项正确;

B、原数据的中位数是6,若去掉其中一个数6时,中位数是=5.5,故本选项错误;

C、原数据的平均数是,若去掉其中一个数6时,平均数是,故本选项错误;

D、众数不变,中位数发生改变,故本选项错误;

故选A.【点睛】考查了确定一组数据的中位数、平均数和众数的能力.一些学生往往对这个概念掌握不清楚,计算方法不明确而误选其它选项,注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数.6、B【解析】试题分析:第一象限点的坐标为(+,+);第二象限点的坐标为(-,+);第三象限点的坐标为(-,-);第四象限点的坐标为(+,-),则点P在第二象限.考点:平面直角坐标系中的点7、C【解析】

设第n个图形有an个菱形(n为正整数),观察图形,根据各图形中菱形个数的变化可得出变化规律“an=4n+1(n为正整数)”,再代入n=9即可求出结论.【详解】解:设第n个图形有an个菱形(n为正整数).观察图形,可知:a1=5=4+1,a2=9=4×2+1,a3=13=4×3+1,a4=17=4×4+1,∴an=4n+1(n为正整数),∴a9=4×9+1=1.故选:C.【点睛】本题考查了规律型:图形的变化类,根据各图形中菱形个数的变化找出变化规律“an=4n+1(n为正整数)”是解题的关键.8、A【解析】

分类讨论:当a=5时,原方程变形一元一次方程,有一个实数解;当a≠5时,根据判别式的意义得到a≥1且a≠5时,方程有两个实数根,然后综合两种情况即可得到满足条件的a的范围.【详解】当a=5时,原方程变形为-4x-1=0,解得x=-;当a≠5时,△=(-4)2-4(a-5)×(-1)≥0,解得a≥1,即a≥1且a≠5时,方程有两个实数根,所以a的取值范围为a≥1.故选A.【点睛】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2-4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.也考查了一元二次方程的定义.9、C【解析】由图像可得:0到0.5小时行驶路程为30千米,所以速度为60km/h;0.5到1.5小时行驶路程为90千米,所以速度为80km/h;之后休息了0.5小时;2到3小时行驶路程为40千米,所以速度为40km/h;路程为150千米,用时3小时,所以平均速度为50km/h;故A、B、D选项是错误的,C选项正确.故选C.10、C【解析】

根据三个角都是直角的四边形是矩形,得四边形AEPF是矩形,根据矩形的对角线相等,得EF=AP,则EF的最小值即为AP的最小值,根据垂线段最短,知:AP的最小值即等于直角三角形ABC斜边上的高.【详解】连接AP,∵在△ABC中,AB=3,AC=4,BC=5,∴AB2+AC2=BC2,即∠BAC=90°,又∵PE⊥AB于E,PF⊥AC于F,∴四边形AEPF是矩形,∴EF=AP,∵AP的最小值即为直角三角形ABC斜边上的高,即2.4,∴EF的最小值为2.4,故选:C.【点睛】本题考查了矩形的性质和判定,勾股定理的逆定理,直角三角形的性质的应用,要能够把要求的线段的最小值转化为便于求的最小值得线段是解此题的关键.11、A【解析】

x2-1=(x+1)(x-1),x2-2x+1=(x-1)2,所以公因式是:x-1,故选A.【点睛】本题考查多项式的公因式,解题的关键是把每一个多项式都因式分解.12、B【解析】

把各点坐标代入解析式即可求解.【详解】A.,y=4×1-2=2≠-2,故不在直线上;B.,y=4×3-2=10,故在直线上;C.,y=4×0.5-2=0,故不在直线上;D.,y=4×(-3)-2=-14,故不在直线上.故选B.【点睛】此题主要考查一次函数的图像,解题的关键是熟知坐标的代入求解.二、填空题(每题4分,共24分)13、3.【解析】试题分析:点B恰好与点C重合,且四边形ABCD是平行四边形,根据翻折的性质,则AE⊥BC,BE=CE=3,在Rt△ABE中,由勾股定理得.故答案为3.考点:3.翻折变换(折叠问题);3.勾股定理;3.平行四边形的性质.14、乙【解析】

从折线图中得出甲乙的射击成绩,再利用方差的公式计算.【详解】解:由图中知,甲的成绩为8,9,7,8,10,7,9,10,7,10,乙的成绩为7,7,8,9,8,9,10,9,9,9,

=(8+9+7+8+10+7+9+10+7+10)÷10=8.5,=(7+7+8+9+8+9+10+9+9+9)÷10=8.5,

甲的方差S甲2=[3×(7-8.5)2+2×(8-8.5)2+2×(9-8.5)2+3×(10-8.5)2]÷10=1.35乙的方差S乙2=[2×(7-8.5)2+2×(8-8.5)2+(10-8.5)2+5×(9-8.5)2]÷10=0.85,∴S2乙<S2甲.

故答案为:乙.【点睛】本题考查了方差的定义与意义,熟记方差的计算公式是解题的关键,它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.15、【解析】

根据∆>0列式求解即可.【详解】由题意得4-8m>0,∴.故答案为:.【点睛】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式∆=b2﹣4ac与根的关系,熟练掌握根的判别式与根的关系式解答本题的关键.当∆>0时,一元二次方程有两个不相等的实数根;当∆=0时,一元二次方程有两个相等的实数根;当∆<0时,一元二次方程没有实数根.16、6【解析】

设甲种汽车安排x辆,则乙种汽车安排10-x辆,根据两辆汽车载重不少于46吨建立不等式求出其解,即可得出答案.【详解】解:设甲种汽车安排x辆,则乙种汽车安排10-x辆,根据题意可得:5x+4(10-x)≥46解得:x≥6因此甲种汽车至少应安排6辆.【点睛】本题主要考查了一元一次不等式的应用,关键是以载重不少于46吨作为不等量关系列出方程求解.17、【解析】

根据根的判别式求解即可.【详解】∵一元二次方程有实数根∴解得故答案为:.【点睛】本题考查了一元二次方程根的问题,掌握根的判别式是解题的关键.18、x1=1,x2=1.1【解析】

移项后分解因式,即可得出两个一元一次方程,求出方程的解即可.【详解】2(x﹣1)2﹣(x﹣1)=0,(x﹣1)[2(x﹣1)﹣1]=0,x﹣1=0,2(x﹣1)﹣1=0,x1=1,x2=1.1,故答案为:x1=1,x2=1.1.【点睛】本题考查了解一元二次方程,能把一元二次方程转化成一元一次方程是解此题的关键.三、解答题(共78分)19、答案见解析【解析】

根据等腰三角形三线合一的性质作图即可,【详解】解:∵AB=BC∴△ABC是等腰三角形,作△ABC中∠ABC的平分线交AC于点F,如图,点F即为所求.【点睛】此题主要考查了等腰三角形的“三线合一”的性质,以及三角形中位线的定义,掌握等腰三角形“三线合一”的性质是解题的关键.20、(1);(2)证明见解析.【解析】

(1)由AM=2AE=4,利用平行四边形的性质可求出BC=AD=1,利用直角三角形的性质得出BE、CE的长,进而得出答案;(2)延长EM,CD交于点N,连接CM.通过证明△AEM≌△DNM,可得EM=MN,然后由直角三角形斜边的中线等于斜边的一半可证MN=MC,然后根据三角形外角的性质证明即可.【详解】(1)解:∵M为AD的中点,AM=2AE=4,∴AD=2AM=1.在▱ABCD的面积中,BC=CD=1,又∵CE⊥AB,∴∠BEC=90°,∵∠BCE=30°,∴BE=BC=4,∴AB=6,CE=4,∴▱ABCD的面积为:AB×CE=6×4=24;(2)证明:延长EM,CD交于点N,连接CM.∵在▱ABCD中,AB∥CD,∴∠AEM=∠N,在△AEM和△DNM中∵∠AEM=∠N,AM=DM,∠AME=∠DMN,∴△AEM≌△DNM(AAS),∴EM=MN,又∵AB∥CD,CE⊥AB,∴CE⊥CD,∴CM是Rt△ECN斜边的中线,∴MN=MC,∴∠N=∠MCN,∴∠EMC=2∠N=2∠AEM.【点睛】此题主要考查了平行四边形的性质、全等三角形的判定与性质、三角形外角的性质、直角三角形的性质等知识.熟练应用平行四边形的性质是解(1)关键,正确作出辅助线是解(2)的关键.21、(1)详见解析;(2)详见解析;(3),理由详见解析.【解析】

(1)根据SAS即可证明;

(2)欲证明DF=DG,只要证明∠DFG=∠DGF;

(3)如图2中,作GM⊥AB于M,GN⊥BC于N.连接EG.首先说明G是△BEF的内心,由题意Rt△FGH≌Rt△FGM,Rt△EGH≌Rt△EGN,四边形GMBN是正方形,推出FH=FM,EH=EN,GN=GM=BM=BN=y,由EH:FH=1:3,设EH=a,则FH=3a,FB=3a+y,BE=a+y,EC=AF,推出FB+BE=2x,可得3a+y+a+y=2x,即y=x-2a,推出CN=2a,推出CE=a,想办法用a表示x、y即可解决问题;【详解】(1)证明:如图1中,∵四边形ABCD是正方形,∴∠C=∠BAD=∠DAF=90°,CD=DA,在△ADF和△CDE中,∴△ADF≌△CDE.(2)证明:如图1中,∵四边形ABCD是正方形,∴∠FBG=45°,∵△ADF≌△CDE,∴DF=DE,∠ADF=∠CDE,∴∠EDF=∠ADC=90°,∠DFE=45°,∵∠DFG=45°+∠EFG,∠DGF=45°+∠GFB,∵∠EFG=∠BFG,∴∠DFG=∠DGF,∴DF=DG.(3)结论:理由:如图2中,作GM⊥AB于M,GN⊥BC于N.连接EG.∵GF平分∠BAE,DB平分∠EBF,∴G是△BEF的内心,∵GH⊥EF,∴GH=GN=GM=y,∵FG=FG,EG=EG,∴Rt△FGH≌Rt△FGM,Rt△EGH≌Rt△EGN,四边形GMBN是正方形,∴FH=FM,EH=EN,GN=GM=BM=BN=y,∵EH:FH=1:3,设EH=a,则FH=3a,∵FB=3a+y,BE=a+y,∵EC=AF,∴FB+BE=2x,∴3a+y+a+y=2x,∴y=x﹣2a,∴CN=2a,∵EN=EH=a,∴CE=a,在Rt△DEF中,DE=2a,在Rt△DCE中,∴∴【点睛】本题考查四边形综合题、正方形的性质、全等三角形的判定和性质、等腰三角形的判定、勾股定理等知识,解题的关键是准确寻找全等三角形解决问题,学会利用参数解决问题,属于中考压轴题.22、(1)见解析;(2)点O到AB的距离为.【解析】

(1)先利用折叠的性质和平行四边形的性质得出DE∥BC,DE=BC,则四边形DBCE是平行四边形,再利用BE=CD即可证明四边形DBCE是矩形;(2)过点O作OF⊥AB,垂足为F,先利用勾股定理求出AB的长度,然后利用面积即可求出OF的长度,则答案可求.【详解】(1)由折叠性质可得:AD=DE,BA=BE,∵四边形ABCD是平行四边形,∴AD=BC,AD∥BC,BA=CD,∴DE∥BC,DE=BC,∴四边形DBCE是平行四边形,又∵BE=CD,∴四边形DBCE是矩形.(2)过点O作OF⊥AB,垂足为F,∵BD⊥AD,∴∠ADB=90°,在Rt△ADB中,BD=4,AD=3,由勾股定理得:AB=,又∵四边形ABCD是平行四边形,∴OB=OD=,∴答:点O到AB的距离为.【点睛】本题主要考查平行四边形的性质,矩形的判定,勾股定理,掌握平行四边形的性质,矩形的判定,勾股定理并能够利用三角形面积进行转化是解题的关键.23、(1)①画图见解析;②证明见解析;(2)答案见解析【解析】

(1)①连接EO并延长交AD于F,即可得到结果;②根据平行四边形的性质和已知条件易证△DFO≌△BEO即可得到结论;(2)连接EO并延长交AD于点F,连接BF交AO于点H,连接DH交AB于点G,连接GF,则线段GF为所求.【详解】解:(1)如图,连接EO并延长交AD于F,则点F即为所求;∵四边形ABCD是平行四边形,∴AD∥BC,OD=OB,∴∠FDO=∠EBO,∠DFO=∠BEO,在△DFO和△BEO中,∠FDO=∴△DFO≌△BEO,∴DF=BE;(2)连接EO并延长交AD于点F,连接BF交AO于点H,连接DH交AB于点G,连接GF,则线段GF为所求.【点睛】本题考查了平行四边形的判定和性质以及全等三角形的判断和性质,熟练掌握平行四边形的判定和性质是解题的关键.24、(1)y=2x-1;(2)存在点,Q(,),使以为顶点的四边形为平行四边形.【解析】

(1)由矩形的性质可得出点B的坐标及OA,AB的长,利用勾股定理可求出OB的长,设AD=a,则DE=a,OD=8-a,OE=OB-BE=1-6=2,利用勾股定理可求出a值,进而可得出点D的坐标,再根据点B,D的坐标,利用待定系数法可求出直线BD所对应的函数表达式;(2)先假设存在点P满足条件,过E作交BC于P作,交BD于Q点,这样得到点Q,四边形即为所求平行四边形,过E作得,可得E点坐标,根据点B、E坐标求出直线BD的解析式,又根据平行的直线,k值相等,求出PE解析式,再求点出P坐标,从而求解.【详解】(1)由题意,得:点B的坐标为(8,6),OA=8,AB=OC=6,

∴OB==1.

设AD=a,则DE=a,OD=8-a

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论