2024年江苏省无锡市锡山区锡东片八年级下册数学期末质量检测试题含解析_第1页
2024年江苏省无锡市锡山区锡东片八年级下册数学期末质量检测试题含解析_第2页
2024年江苏省无锡市锡山区锡东片八年级下册数学期末质量检测试题含解析_第3页
2024年江苏省无锡市锡山区锡东片八年级下册数学期末质量检测试题含解析_第4页
2024年江苏省无锡市锡山区锡东片八年级下册数学期末质量检测试题含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024年江苏省无锡市锡山区锡东片八年级下册数学期末质量检测试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每题4分,共48分)1.如图,在边长为2的正方形ABCD中剪去一个边长为1的小正方形CEFG,动点P从点A出发,沿A→D→E→F→G→B的路线绕多边形的边匀速运动到点B时停止(不含点A和点B),则△ABP的面积S随着时间t变化的函数图象大致是()A. B. C. D.2.如图,在平面直角坐标系中,线段AB的端点坐标为A(-2,4),B(4,2),直线y=kx-2与线段AB有交点,则K的值不可能是()A.-5 B.-2 C.3 D.53.若(x-9)(2x-n)=2x2+mx-18,则m、n的值分别是()A.m=-16,n=-2 B.m=16,n=-2 C.m=-16,n=2 D.m=16,n=24.如图,经过点B(1,0)的直线y=kx+b与直线y=4x+4相交于点A(m,),则kx+b<4x+4的解集为()A.x> B.x< C.x<1 D.x>15.如图,在Rt△ABC中,∠ACB=90°,AC=6,BC=12,点D在边BC上,点E在线段AD上,EF⊥AC于点F,EG⊥EF交AB于点G,若EF=EG,则CD的长为()A.3.6 B.4 C.4.8 D.56.如果(2+3)2=a+b3,a,b为有理数,那么a+b=()A.7+43 B.11 C.7 D.37.某人从一鱼摊上买了三条鱼,平均每条a元,又从另一个鱼摊上买了两条鱼,平均每条b元,后来他又以每条a+b2A.a>b B.a<b C.a=b D.与ab大小无关8.下列各曲线中哪个不能表示y是x的函数的是()A. B. C. D.9.为了了解某市参加中考的25000名学生的视力情况,抽查了2000名学生的视力进行统计分析,下面四个判断正确的是()A.2000名学生的视力是总体的一个样本 B.25000名学生是总体C.每名学生是总体的一个个体 D.样本容量是2000名10.直线y=﹣kx+k﹣3与直线y=kx在同一坐标系中的大致图象可能是()A. B. C. D.11.如图,点,在反比例函数的图象上,连结,,以,为边作,若点恰好落在反比例函数的图象上,此时的面积是()A. B. C. D.12.如图,菱形ABCD的一边AB的中点E到对角线交点O的距离为4cm,则此菱形的周长为()A.8cm B.16cm C.cm D.32cm二、填空题(每题4分,共24分)13.如图,已知正方形ABCD边长为3,点E在AB边上且BE=1,点P,Q分别是边BC,CD的动点(均不与顶点重合),当四边形AEPQ的周长取最小值时,四边形AEPQ的面积是_____.14.如图,平行四边形中,为的中点,连接,若平行四边形的面积为,则的面积为____.15.有5张正面分别标有数字-2,0,2,4,6的不透明卡片,它们除数不同外其余全部相同,先将它们背面朝上,洗匀后从中任取一张,将该卡片上的数字记为,则使关于的不等式组有解的概率为____________;16.如图①,在▱ABCD中,∠B=120°,动点P从点B出发,沿BC、CD、DA运动至点A停止,设点P运动的路程为xcm,△PAB的面积为ycm2,y关于x的函数的图象如图②所示,则图②中H点的横坐标为_____.17.如图,在梯形ABCD中,AD∥BC,AD=1,BC=4,AC=3,BD=4,则梯形ABCD的面积为______.18.满足a2+b2=c2的三个正整数,称为勾股数.写出你比较熟悉的两组勾股数:①_____;②_____.三、解答题(共78分)19.(8分)如图,在直角坐标系中.若把向上平移2个单位,再向右平移2个单位得,在图中画出,并写出的坐标;求出的面积.20.(8分)解不等式组,并把它的解集在数轴上表示出来.21.(8分)某车行经销的A型自行车去年6月份销售总额为1.6万元,今年由于改造升级每辆车售价比去年增加200元,今年6月份与去年同期相比,销售数量相同,销售总额增加25%.今年A,B两种型号车的进价和售价如下表:

(1)求今年A型车每辆售价多少元?

(2)该车行计划7月份用不超过4.3万元的资金新进一批A型车和B型车共50辆,应如何进货才能使这批车售完后获利最多?22.(10分)如图,直线分别与轴、轴相交于点和点,点的坐标为,点的坐标为.(1)求的值;(2)若点是第二象限内的直线上的一个动点,当点运动过程中,试写出的面积与的函数关系式,并写出自变量的取值范围;(3)探究:当运动到什么位置时,的面积为,并说明理由.23.(10分)(1)因式分解x(2)解不等式组3x-(x-2)≤624.(10分)如图,四边形ABCD是矩形,把矩形沿AC折叠,点B落在点E处,AE与DC的交点为O,连接DE.(1)求证:△ADE≌△CED;(2)求证:DE∥AC.25.(12分)如图是甲、乙两名射击运动员的5次训练成绩的折线统计图:(1)分别计算甲、乙运动员射击环数;(2)分别计算甲、乙运动员射击成绩的方差;(3)如果你是教练员,会选择哪位运动员参加比赛,请说明理由.26.成都市某超市从生产基地购进200千克水果,每千克进价为2元,运输过程中质量损失5%,假设不计超市其他费用(1)如果超市在进价的基础上提高5%作为售价,请你计算说明超市是否亏本;(2)如果该水果的利润率不得低于14%,那么该水果的售价至少为多少元?

参考答案一、选择题(每题4分,共48分)1、B【解析】解:当点P在AD上时,△ABP的底AB不变,高增大,所以△ABP的面积S随着时间t的增大而增大;当点P在DE上时,△ABP的底AB不变,高不变,所以△ABP的面积S不变;当点P在EF上时,△ABP的底AB不变,高减小,所以△ABP的面积S随着时间t的减小而减小;当点P在FG上时,△ABP的底AB不变,高不变,所以△ABP的面积S不变;当点P在GB上时,△ABP的底AB不变,高减小,所以△ABP的面积S随着时间t的减小而减小;故选B.2、B【解析】

当直线y=kx-2与线段AB的交点为A点时,把A(-2,4)代入y=kx-2,求出k=-3,根据一次函数的有关性质得到当k≤-3时直线y=kx-2与线段AB有交点;当直线y=kx-2与线段AB的交点为B点时,把B(4,2)代入y=kx-2,求出k=1,根据一次函数的有关性质得到当k≥1时直线y=kx-2与线段AB有交点,从而能得到正确选项.【详解】把A(-2,4)代入y=kx-2得,4=-2k-2,解得k=-3,∴当直线y=kx-2与线段AB有交点,且过第二、四象限时,k满足的条件为k≤-3;把B(4,2)代入y=kx-2得,4k-2=2,解得k=1,∴当直线y=kx-2与线段AB有交点,且过第一、三象限时,k满足的条件为k≥1.即k≤-3或k≥1.所以直线y=kx-2与线段AB有交点,则k的值不可能是-2.故选B.【点睛】本题考查了一次函数y=kx+b(k≠0)的性质:当k>0时,图象必过第一、三象限,k越大直线越靠近y轴;当k<0时,图象必过第二、四象限,k越小直线越靠近y轴.3、A【解析】

先利用整式的乘法法则进行计算,再根据等式的性质即可求解.【详解】∵(x-9)(2x-n)=2x2-nx-18x+9n=2x2-(n+18)x+9n=2x2+mx-18,∴-(n+18)=m,9n=-18∴n=-2,m=-16故选A.【点睛】此题主要考查整式的乘法,解题的关键是熟知整式乘法的运算法则.4、A【解析】

将点A(m,)代入y=4x+4求出m的值,观察直线y=kx+b落在直线y=4x+4的下方对应的x的取值即为所求.【详解】∵经过点B(1,0)的直线y=kx+b与直线y=4x+4相交于点A(m,),∴4m+4=,∴m=-,∴直线y=kx+b与直线y=4x+4的交点A的坐标为(-,),直线y=kx+b与x轴的交点坐标为B(1,0),∴当x>-时,kx+b<4x+4,故选A.【点睛】本题考查了一次函数与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数y=ax+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.5、B【解析】

过点D作DH⊥BC交AB于点H,根据△AFE∽△ACD和△AEG∽△ADH可得DC=DH,再由△BDH∽△BCA,根据相似三角形的性质列出方程即可求出CD.【详解】解:过点D作DH⊥BC交AB于点H,∵EF⊥AC,∴EF∥BC,∴△AFE∽△ACD,∴,∵DH⊥BC,EG⊥EF,∴DH∥EG,∴△AEG∽△ADH,∴,∴∵EF=EG,∴DC=DH,设DH=DC=x,则BD=12-x,又∵△BDH∽△BCA,∴,即,解得:x=4,即CD=4,故选B.【点睛】本题考查了相似三角形的判定和性质,根据相似的性质得到DC=DH是解题关键.6、B【解析】

直接利用完全平方公式将原式展开,进而得出a,b的值,即可得出答案.【详解】解:∵(2+3)2=a+b3(a,b为有理数),

∴7+43=a+b3,

∴a=7,b=4,

∴a+b=1.

故选B.【点睛】此题主要考查了二次根式的化简求值,正确得出a,b的值是解题关键.7、A【解析】

本题考查一元一次不等式组的应用,将现实生活中的事件与数学思想联系起来,读懂题列出不等式关系式即可求解.利润=总售价-总成本=a+b2b×5-(3a+2b)=0.5b-0.5a,赔钱了说明利润<【详解】利润=总售价-总成本=a+b2b×5-(3a+2b)=0.5b-0.5a,赔钱了说明利润<0

∴0.5b-0.5a<0,

∴a>b.

故选A【点睛】解决本题的关键是读懂题意,找到符合题意的不等关系式.8、D【解析】

在坐标系中,对于x的取值范围内的任意一点,通过这点作x轴的垂线,则垂线与图形只有一个交点.根据定义即可判断.【详解】解:显然A、B、C三选项中,对于自变量x的任何值,y都有唯一的值与之相对应,y是x的函数;D、对于x>0的部分值,y都有二个或三个值与之相对应,则y不是x的函数;故选:D.【点睛】本题主要考查了函数的定义,在定义中特别要注意,对于x的每一个值,y都有唯一的值与其对应.9、A【解析】

根据相关概念(总体:所要考察对象的全体;个体:总体的每一个考察对象叫个体;样本:抽取的部分个体叫做一个样本;样本容量:样本中个体的数目)进行分析.【详解】根据题意可得:2000名学生的视力情况是总体,

2000名学生的视力是样本,

2000是样本容量,

每个学生的视力是总体的一个个体.

故选A.【点睛】考查了总体、个体、样本、样本容量.解题关键是理解相差概念(总体:所要考察对象的全体;个体:总体的每一个考察对象叫个体;样本:抽取的部分个体叫做一个样本;样本容量:样本中个体的数目).10、B【解析】

若y=kx过第一、三象限,则k>0,所以y=-kx+k-3过第二、四象限,可对A、D进行判断;若y=kx过第二、四象限,则k<0,-k>0,k-3<0,所以y=-kx+k-3过第一、三象限,与y轴的交点在x轴下方,则可对B、C进行判断.【详解】A、y=kx过第一、三象限,则k>0,所以y=-kx+k-3过第二、四象限,所以A选项错误;B、y=kx过第二、四象限,则k<0,-k>0,k-3<0,所以y=-kx+k-3过第一、三象限,与y轴的交点在x轴下方,所以B选项正确;C、y=kx过第二、四象限,则k<0,-k>0,k-3<0,所以y=-kx+k-3过第一、三象限,与y轴的交点在x轴下方,所以C选项错误;D、y=kx过第一、三象限,则k>0,所以y=-kx+k-3过第二、四象限,所以D选项错误.故选B.【点睛】本题考查了一次函数的图象:一次函数y=kx+b(k≠0)的图象为一条直线,当k>0,图象过第一、三象限;当k<0,图象过第二、四象限;直线与y轴的交点坐标为(0,b).11、A【解析】

连接AC,BO交于点E,作AG⊥x轴,CF⊥x轴,设点A(a,),点C(m,)(a<0,m>0),由平行四边形的性质和中点坐标公式可得点B[(a+m),(+)],把点B坐标代入解析式可求a=-2m,由面积和差关系可求解.【详解】解:如图,连接AC,BO交于点E,作AG⊥x轴,CF⊥x轴,设点A(a,),点C(m,)(a<0,m>0),∵四边形ABCO是平行四边形,∴AC与BO互相平分,∴点E(),∵点O坐标(0,0),∴点B[(a+m),(+)].∵点B在反比例函数y=(x<0)的图象上,∴,∴a=-2m,a=m(不合题意舍去),∴点A(-2m,),∴四边形ACFG是矩形,∴S△AOC=(+)(m+2m)--1=,∴▱OABC的面积=2×S△AOC=3.故选:A.【点睛】本题考查了反比例函数图象上点的坐标特征,平行四边形的性质,中点坐标公式,解决问题的关键是数形结合思想的运用.12、D【解析】

根据菱形的性质可知AO=OC,继而根据中位线定理求得BC长,再根据菱形的四条边相等即可求得答案.【详解】∵四边形ABCD是菱形,∴AB=BC=CD=AD,AO=OC,∵AE=BE,∴BC=2EO=2×4cm=8cm,即AB=BC=CD=AD=8cm,即菱形ABCD的周长为32cm,故选D.【点睛】本题考查了菱形的性质,三角形中位线定理,熟练掌握相关性质与定理是解题的关键.二、填空题(每题4分,共24分)13、.【解析】

解:如图3所示,作E关于BC的对称点E′,点A关于DC的对称点A′,连接A′E′,四边形AEPQ的周长最小,∵AD=A′D=3,BE=BE′=3,∴AA′=6,AE′=3.∵DQ∥AE′,D是AA′的中点,∴DQ是△AA′E′的中位线,∴DQ=AE′=3;CQ=DC﹣CQ=3﹣3=3,∵BP∥AA′,∴△BE′P∽△AE′A′,∴,即,BP=,CP=BC﹣BP==,S四边形AEPQ=S正方形ABCD﹣S△ADQ﹣S△PCQ﹣SBEP=9﹣AD•DQ﹣CQ•CP﹣BE•BP=9﹣×3×3﹣×3×﹣×3×=,故答案为.【点睛】本题考查3.轴对称-最短路线问题;3.正方形的性质.14、6【解析】

如图,连接AC.首先证明△ABC≌△CDA,可得S△ABC=S△ADC=×24=12(cm2),由AE=DE,可得S△CDE=S△ADC=6;【详解】解:如图,连接.∵四边形是平行四边形,∴,,∵,∴,∴,∵,∴,故答案为6【点睛】本题考查平行四边形的性质、三角形的面积等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.15、【解析】首先确定不等式的解,然后根据有确定a的取值范围,再利用概率公式求解即可.解:解关于x不等式得,∵关于x不等式有实数解,∴解得a<1.∴使关于x不等式有实数解的概率为.故答案为“点睛”本题考查了概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,期中事件A出现m种结果,那么事件A的概率P(A)=.16、14【解析】

根据图象点P到达C时,△PAB的面积为6,由BC=4,∠B=120°可求得AB=6,H横坐标表示点P从B开始运动到A的总路程,则问题可解.【详解】由图象可知,当x=4时,点P到达C点,此时△PAB的面积为6∵∠B=120°,BC=4∴解得AB=6H点表示点P到达A时运动的路程为4+6+4=14故答案为14【点睛】本题为动点问题的函数图象探究题,考查了一次函数图象性质,解答时注意研究动点到达临界点前后函数图象的变化.17、2【解析】

过点D作DE∥AC,交BC的延长线于点E,得四边形ACED是平行四边形,则DE=AC=3,CE=AD=1.根据勾股定理的逆定理即可证明三角形BDE是直角三角形.根据梯形的面积即为直角三角形BDE的面积进行计算.【详解】解:过点D作DE∥AC,交BC的延长线于点E,则四边形ACED是平行四边形,∴DE=AC=3,CE=AD=1,在三角形BDE中,∵BD=4,DE=3,BE=5,∴根据勾股定理的逆定理,得三角形BDE是直角三角形,∵四边形ACED是平行四边形∴AD=CE,∴AD+BC=BE,∵梯形ABCD与三角形BDE的高相等,∴梯形的面积即是三角形BDE的面积,即3×4÷2=2,故答案是:2.【点睛】本题考查了梯形的性质,梯形中常见的辅助线之一是平移对角线.18、3,4,56,8,10【解析】

根据勾股数的定义即可得出答案.【详解】∵3、4、5是三个正整数,且满足,∴3、4、5是一组勾股数;同理,6、8、10也是一组勾股数.故答案为:①3,4,5;②6,8,10.【点睛】本题考查了勾股数.解题的关键在于要判断是否为勾股数,必须根据勾股数是正整数,同时还需验证两小边的平方和是否等于最长边的平方.三、解答题(共78分)19、(1)见解析;(2)7.【解析】

(1)分别将点三个点向上平移2个单位,再向右平移2个单位,然后顺次连接,并写出各点坐标;(2)用三角形所在的矩形的面积减去几个小三角形的面积即可求解.【详解】解:如图所示:坐标为,,;.【点睛】本题考查了根据平移变换作图,解答本题的关键是根据网格结构作出点三个点平移过后的点.20、,数轴见解析.【解析】试题分析:分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.试题解析:解:解不等式5x+1>3(x﹣1),得:x>﹣2,解不等式x﹣1≤7﹣x,得:x≤4,则不等式组的解集为﹣2<x≤4,将解集表示在数轴上如下:21、(1)型车每辆售价为1000元;(2)型车30辆、型车20辆,获利最多.【解析】

(1)设今年型车每辆售价为元,则去年型车每辆售价为元,根据数量总价单价结合今年6月份与去年同期相比销售数量相同,即可得出关于的分式方程,解之经检验后即可得出结论;(2)设购进型车辆,则购进型车辆,根据总价单价数量结合总费用不超过4.3万元,即可得出关于的一元一次不等式,解之即可得出的取值范围,再根据销售利润单辆利润购进数量即可得出销售利润关于的函数关系式,利用一次函数的性质解决最值问题即可.【详解】解:(1)设今年型车每辆售价为元,则去年型车每辆售价为元,根据题意得:,解得:,经检验,是原分式方程的解.答:今年型车每辆售价为1000元.(2)设购进型车辆,则购进型车辆,根据题意得:,解得:.销售利润为,,当时,销售利润最多.答:当购进型车30辆、购进型车20辆时,才能使这批车售完后获利最多.【点睛】本题考查了分式方程的应用、一次函数的最值以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据数量关系,找出销售利润关于的函数关系式.22、(1);(2);(3)P点坐标为时,的面积为,理由见解析【解析】

(1)把E的坐标为(−8,0)代入y=kx+6中即可求出k的值;(2)如图,OA的长度可以根据A的坐标求出,OA作为△OPA的底,P点横坐标的绝对值作为高的长度,那么根据三角形的面积公式就可以求出△OPA的面积S与x的函数关系式,自变量x的取值范围可以利用点P(x,y)是第二象限内的直线上的一个动点来确定;(3)可以利用(2)的结果求出P的横坐标,然后就可以求出P的纵坐标.【详解】解:(1)直线分别与轴、轴相交于点和点,点的坐标为,,;(2)如图,过作于,点是第二象限内的直线上的一个动点,则,,∵点的坐标为,∴OA=3,∴;(3)当P点坐标为时,的面积为,理由如下:当时,即,解得:,.坐标为,.【点睛】此题把一次函数与三角形的面积相结合,考查了同学们综合运用所学知识的能力,是一道综合性较好的题目.解答此题的关键是根据一次函数的特点,分别求出已知各点的坐标再计算.23、(1)x-y+2x-y-2;(2)-4<x≤2【解析】

(1)对原式进行整理再利用平方差公式分解因式得出即可.(2)分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【详解】(1)解:原式==(x-y+2)(x-y-2)(2)解1式得:x≤2解2式得:x>-4∴-4<x≤2【点睛】此题主要考查了公式法分解因式及解不等式组,熟练应用平方差公式与掌握解不等式的口诀是解题关键.24、(1)证明见解析;(2)证明见

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论