2024届吉林省长春市第三中学数学八年级下册期末质量跟踪监视模拟试题含解析_第1页
2024届吉林省长春市第三中学数学八年级下册期末质量跟踪监视模拟试题含解析_第2页
2024届吉林省长春市第三中学数学八年级下册期末质量跟踪监视模拟试题含解析_第3页
2024届吉林省长春市第三中学数学八年级下册期末质量跟踪监视模拟试题含解析_第4页
2024届吉林省长春市第三中学数学八年级下册期末质量跟踪监视模拟试题含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届吉林省长春市第三中学数学八年级下册期末质量跟踪监视模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.下面四个美术字中可以看作轴对称图形的是()A. B. C. D.2.要得到函数y2x3的图象,只需将函数y2x的图象()A.向左平移3个单位 B.向右平移3个单位C.向下平移3个单位 D.向上平移3个单位3.若分式(x≠0,y≠0)中x,y同时扩大3倍,则分式的值()A.扩大3倍 B.缩小3倍 C.改变 D.不改变4.△ABC中,AB=13,AC=15,高AD=12,则BC的长为()A.14 B.4 C.14或4 D.以上都不对5.如图,在平面直角坐标系中,点在坐标轴上,是的中点,四边形是矩形,四边形是正方形,若点的坐标为,则点的坐标为()A. B. C. D.6.矩形、菱形、正方形都具有的性质是()A.对角线相等 B.对角线互相平分 C.对角线互相垂直 D.对角线互相平分且相等7.如图,将绕点按逆时针方向旋转得到(点的对应点是点,点的对应点是点),连接,若,则的度数为()A. B. C. D.8.直线与直线的交点不可能在()A.第一象限 B.第二象限 C.第三象限 D.第四象限9.关于数据-4,1,2,-1,2,下面结果中,错误的是()A.中位数为1 B.方差为26 C.众数为2 D.平均数为010.如图,直线y=ax+b过点A(0,2)和点B(﹣3,0),则方程ax+b=0的解是()A.x=2 B.x=0 C.x=﹣1 D.x=﹣3二、填空题(每小题3分,共24分)11.如果一组数据2,4,,3,5的众数是4,那么该组数据的中位数是___.12.如图,在平面直角坐标系中,将正方形绕点逆时针旋转后得到正方形,依此方式,绕点连续旋转2019次得到正方形,如果点的坐标为(1,0),那么点的坐标为________.13.甲、乙两地相距200千米,汽车从甲地匀速行驶到乙地,汽车行驶时间关于行驶速度的函数表达式是_____.14.已知点P(a+3,7+a)位于二、四象限的角平分线上,则点P的坐标为_________________.15.商店购进一批文具盒,进价每个4元,零售价每个6元,为促销决定打折销售,但利润率仍然不低于20%,那么该文具盒实际价格最多可打___________折销售16.观察下列按顺序排列的等式:,试猜想第n个等式(n为正整数):an=_____.17.关于的函数(其中)是一次函数,那么=_______。18.存在两个变量x与y,y是x的函数,该函数同时满足两个条件:①图象经过(1,1)点;②当x>0时,y随x的增大而减小,这个函数的解析式是▲(写出一个即可).三、解答题(共66分)19.(10分)如图,正方形ABCD的边长为9,将正方形折叠,使顶点D落在BC边上的点E处,折痕为GH.若BE:EC=2:1,求线段EC,CH的长.20.(6分)己知:如图1,⊙O的半径为2,BC是⊙O的弦,点A是⊙O上的一动点.图1图2(1)当△ABC的面积最大时,请用尺规作图确定点A位置(尺规作图只保留作图痕迹,不需要写作法);(2)如图2,在满足(1)条件下,连接AO并延长交⊙O于点D,连接BD并延长交AC的延长线于点E,若∠BAC=45°,求AC2+CE2的值.21.(6分)某中学开学初到商场购买A.B两种品牌的足球,购买A种品牌的足球50个,B种品牌的足球25个,共花费4500元.已知购买一个B种品牌的足球比购买一个A种品牌的足球多花30元(1)求购买一个A种品牌、一个B种品牌的足球各需多少元?(2)学校为了响应“足球进校园”的号召,决定再次购进A.B两种品牌足球共50个,正好赶上商场对商品价格进行调整,A品牌足球售价比第一次购买时提高4元,B品牌足球按第一次购买时售价的9折出售,如果学校此次购买A.B两种品牌足球的总费用不超过第一次花费的70%,且保证这次购买的B种品牌足球不少于23个,则这次学校有哪几种购买方案?22.(8分)如图,在▱ABCD中,对角线AC,BD交于点O,过点B作BE⊥CD于点E,延长CD到点F,使DF=CE,连接AF.(1)求证:四边形ABEF是矩形;(2)连接OF,若AB=6,DE=2,∠ADF=45°,求OF的长度.23.(8分)如图,正方形网格中每个小正方形边长都是,图中标有、、、、、、共个格点(每个小格的顶点叫做格点)(1)从个格点中选个点为顶点,在所给网格图中各画出-一个平行四边形:(2)在(1)所画的平行四边形中任选-一个,求出其面积.24.(8分)某乡镇企业生产部有技术工人15人,生产部为了合理制定产品的每月生产定额,统计了这15人某月的加工零件个数.(如下表)每人加工零件数544530242112人数112632(1)写出这15人该月加工零件数的平均数、中位数和众数;(2)假设生产部负责人把每位工人的月加工零件数定为24件,你认为是否合理?为什么?如果不合理,请你设计一个较为合理的生产定额,并说明理由.25.(10分)某初中学校欲向高一级学校推荐一名学生,根据规定的推荐程序:首先由本年级200名学生民主投票,每人只能推荐一人(不设弃权票),选出了票数最多的甲、乙、丙三人.投票结果统计如图一:其次,对三名候选人进行了笔试和面试两项测试.各项成绩如右表所示:图二是某同学根据上表绘制的一个不完整的条形图.请你根据以上信息解答下列问题:(1)补全图一和图二.(2)请计算每名候选人的得票数.(3)若每名候选人得一票记1分,投票、笔试、面试三项得分按照2:5:3的比确定,计算三名候选人的平均成绩,成绩高的将被录取,应该录取谁?测试项目测试成绩/分甲乙丙笔试929095面试85958026.(10分)在△ABC中,D是BC边的中点,E、F分别在AD及其延长线上,CE∥BF,连接BE、CF.(1)求证:△BDF≌△CDE;(2)若DE=BC,试判断四边形BFCE是怎样的四边形,并证明你的结论.

参考答案一、选择题(每小题3分,共30分)1、D【解析】

根据轴对称图形的意义:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴;据此判断即可.【详解】四个汉字中只有“善”字可以看作轴对称图形.故选D.【点睛】本题考查了轴对称图形的知识,掌握轴对称图形的意义,判断是不是轴对称图形的关键是找出对称轴,看图形沿对称轴对折后两部分能否完全重合.2、D【解析】

平移后相当于x不变y增加了3个单位,由此可得出答案.【详解】解:由题意得x值不变y增加3个单位

应向上平移3个单位.

故选:D.【点睛】本题考查一次函数图象的几何变换,注意平移k值不变的性质.3、D【解析】

可将式中的x,y都用3x,3y来表示,再将化简后的式子与原式对比,即可得出答案.【详解】将原式中的x,y分别用3x,3y表示.故选D.【点睛】考查的是对分式的性质的理解,分式中元素扩大或缩小N倍,只要将原数乘以或除以N,再代入原式求解,是此类题目的常见解法.4、C【解析】

分两种情况:△ABC是锐角三角形和△ABC是钝角三角形,都需要先求出BD,CD的长度,在锐角三角形中,利用求解;在钝角三角形中,利用求解.【详解】(1)若△ABC是锐角三角形,在中,∵由勾股定理得在中,∵由勾股定理得∴(2)若△ABC是钝角三角形,在中,∵由勾股定理得在中,∵由勾股定理得∴综上所述,BC的长为14或4故选:C.【点睛】本题主要考查勾股定理,掌握勾股定理并分情况讨论是解题的关键.5、D【解析】

过点D作DH⊥y轴,交y轴于H,根据矩形和正方形的性质可得∠EOF=∠BCF=∠HDE=90°,EF=BF=ED,BC=OA,根据角的和差故关系可得∠FBC=∠OFE=∠HED,∠BFC=∠OEF=∠HDE,利用ASA可证明△OFE≌△CBF≌△HDE,可得FC=OE=HD,BC=OF=HE,由点E为OA中点可得OF=2FC,即可求出FC的长,进而可得HE的长,即可求出OH的长,即可得点D坐标.【详解】过点D作DH⊥y轴,交y轴于H,∵四边形是矩形,四边形是正方形,∴∠EOF=∠BCF=∠HDE=∠EFB=90°,EF=BF=ED,BC=OA,∴∠OFE+∠BFC=90°,∠FBC+∠BFC=90°,∴∠OFE=∠FBC,同理:∠OEF=∠BFC,在△OEF和△CFB中,,∴BC=OF=OA,FC=OE,∵点E为OA中点,∴OA=2OE,∴OF=2OE,∴OC=3OE,∵点C坐标为(3,0),∴OC=3,∴OE=1,OF=2,同理:△HDE≌△OEF,∴HD=OE=1,HE=OF=2,∴OH=OE+HE=3,∴点D坐标为(1,3),故选:D.【点睛】本题考查正方形的性质、矩形的性质及全等三角形的判定与性质,熟练掌握全等三角形的判定定理是解题关键.6、B【解析】

矩形、菱形、正方形都是特殊的平行四边形,因而平行四边形的性质就是四个图形都具有的性质.【详解】解:平行四边形的对角线互相平分,而对角线相等、平分一组对角、互相垂直不一定成立.

故平行四边形、矩形、菱形、正方形都具有的性质是:对角线互相平分.

故选:B.【点睛】本题主要考查了正方形、矩形、菱形、平行四边形的性质,理解四个图形之间的关系是解题关键.7、B【解析】

根据旋转的性质得到∠BAB′=∠CAC′=120°,AB=AB′,根据等腰三角形的性质易得∠AB′B=30°,再根据平行线的性质即可得∠C′AB′=∠AB′B=30°.【详解】解:如图示,将△ABC绕点A按逆时针方向旋转l20°得到△AB′C′,

∴∠BAB′=∠CAC′=120°,AB=AB′,

∴,∵AC′∥BB′,

∴∠C′AB′=∠AB′B=30°,

故选:B.【点睛】本题考查了旋转的性质:旋转前后两图形全等;对应点到旋转中心的距离相等;对应点与旋转中心的连线段的夹角等于旋转角.8、C【解析】

判断出直线可能经过的象限,即可求得它们的交点不可能在的象限.【详解】解:因为y=−x+4的图象经过一、二、四象限,所以直线y=x+m与y=−x+4的交点不可能在第三象限,故选:C.【点睛】本题考查一次函数的图象和系数的关系,根据一次函数的系数k,b与0的大小关系判断出直线经过的象限即可得到交点不在的象限.9、B【解析】

A.∵从小到大排序为-4,-1,,1,2,2,∴中位数为1,故正确;B.,,故不正确;C.∵众数是2,故正确;D.,故正确;故选B.10、D【解析】∵方程ax+b=0的解是直线y=ax+b与x轴的交点横坐标,∴方程ax+b=0的解是x=-3.故选D.二、填空题(每小题3分,共24分)11、1【解析】

根据众数为1,可得x等于1,然后根据中位数的概念,求解即可.【详解】解:因为这组数据的众数是1,

∴x=1,

则数据为2、3、1、1、5,

所至这组数据的中位数为1,

故答案为:1.【点睛】本题考查了众数和中位数的概念:一组数据中出现次数最多的数据叫做众数;将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.12、【解析】

根据图形可知:点B在以O为圆心,以OB为半径的圆上运动,由旋转可知:将正方形OABC绕点O逆时针旋转45∘后得到正方形OA1B1C1,相当于将线段OB绕点O逆时针旋转45∘,可得对应点B的坐标,根据规律发现是8次一循环,可得结论.【详解】∵四边形OABC是正方形,且OA=1,∴B(1,1),连接OB,由勾股定理得:OB=,由旋转得:OB=OB1=OB2=OB3=…=,∵将正方形OABC绕点O逆时针旋转45∘后得到正方形OA1B1C1,相当于将线段OB绕点O逆时针旋转45∘,依次得到∠AOB=∠BOB1=∠B1OB2=…=45∘,∴B1(0,),B2(−1,1),B3(−,0),…,发现是8次一循环,所以2019÷8=252…3,∴点B2019的坐标为(−,0)【点睛】本题考查了旋转的性质,对应点到旋转中心的距离相等;对应点与旋转中心所连接线段的夹角等于旋转角,也考查了坐标与图形的变化、规律型、点的坐标等知识,解题的关键是学会从特殊到一般的探究规律的方法.13、【解析】

根据实际意义,写出函数的解析式即可.【详解】解:根据题意有:;故与之间的函数图解析式为,故答案为:.【点睛】本题考查了反比例函数的应用,现实生活中存在大量成反比例函数的两个变量,解答该类问题的关键是确定两个变量之间的函数关系,然后利用实际意义确定其所在的象限.14、(-2,2)【解析】

根据二、四象限的角平分线上点的坐标特征得到a+3+7+a=0,然后解方程求出a的值,代入即可得出结论.【详解】根据题意得:a+3+7+a=0,解得:a=﹣5,∴a+3=-2,7+a=2,∴P(-2,2).故答案为:(-2,2).【点睛】本题考查了点的坐标.掌握二、四象限的角平分线上点的坐标特征是解答本题的关键.15、8【解析】

设该文具盒实际价格可打x折销售,根据利润率不低于20%列不等式进行求解即可得.【详解】设该文具盒实际价格可打x折销售,由题意得:6×-4≥4×20%,解得:x≥8,故答案为8.【点睛】本题考查了一元一次不等式的应用,弄清题意,找准不等关系列出不等式是解题的关键.16、.【解析】

根据题意可知,∴.17、、、【解析】

根据一次函数的定义解答.【详解】依题意得:(k-1)(k-2)(k-2)+1=1或k=1,所以(k-1)(k-2)(k-2)=1或k=1,当k=2时,不是一次函数,故k≠2,所以,k-1=1或k-2=1或k=1,所以k=1或k=2或k=1.故答案是:1或1或2.【点睛】考查了一次函数的定义,一般地,形如y=kx+b(k≠1,k、b是常数)的函数,叫做一次函数.18、(答案不唯一).【解析】根据题意,函数可以是一次函数,反比例函数或二次函数.例如设此函数的解析式为(k>2),∵此函数经过点(1,1),∴k=1.∴此函数可以为:.设此函数的解析式为(k<2),∵此函数经过点(1,1),∴,k<2.∴此函数可以为:.设此函数的解析式为,∵此函数经过点(1,1),∴.∴此函数可以为:.三、解答题(共66分)19、3,2.【解析】

根据比例求出EC,设CH=x,表示出DH,根据折叠可得EH=DH,在Rt△ECH中,利用勾股定理列方程求解即可得到CH.【详解】解:∵BC=9,BE:EC=1:1,∴EC=3,设CH=x,则DH=9﹣x,由折叠可知EH=DH=9﹣x,在Rt△ECH中,∠C=90°,∴EC1+CH1=EH1.即31+x1=(9﹣x)1,解得x=2,∴CH=2.【点睛】本题考查了翻折变换,正方形的性质,翻折前后对应边相等,对应角相等,此类题目,利用勾股定理列出方程是解题的关键.20、(1)见解析;(1)2.【解析】

(1)作BC的垂直平分线交优弧BC于A,则点A满足条件;

(1)利用圆周角定理得到∠ACD=90°,根据圆内接四边形的性质得∠CDE=∠BAC=45°,通过判断△DCE为等腰直角三角形得到CE=CD,然后根据勾股定理得到AC1+CE1=AC1+CD1=AD1.【详解】解:(1)如图1,点A为所作;

(1)如图1,连接CD,∵AD为直径,

∴∠ACD=90°,

∵∠CDE=∠BAC=45°,

∴△DCE为等腰直角三角形,

∴CE=CD,

∴AC1+CE1=AC1+CD1=AD1=41=2.【点睛】本题考查了作图-复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.也考查了圆周角定理.21、(1)A种足球50元,B种足球80元;(2)方案一:购买A种足球25个,B种足球25个;方案二:购买A种足球26个,B种足球24个;方案三:购买A种足球27个,B种足球23个.【解析】

(1)设A种品牌足球的单价为x元,B种品牌足球的单价为y元,根据“总费用=买A种足球费用+买B种足球费用,以及B种足球单价比A种足球贵30元”可得出关于x、y的二元一次方程组,解方程组即可得出结论;(2)设第二次购买A种足球m个,则购买B种足球(50-m)个,根据“总费用=买A种足球费用+买B种足球费用,以及B种足球不小于23个”可得出关于m的一元一次不等式组,解不等式组可得出m的取值范围,由此即可得出结论.【详解】(1)设A种品牌足球的单价为x元,B种品牌足球的单价为y元,依题意得:,解得:.答:购买一个A种品牌的足球需要50元,购买一个B种品牌的足球需要80元.(2)设第二次购买A种足球m个,则购买B种足球(50−m)个,依题意得:,解得:25⩽m⩽27.故这次学校购买足球有三种方案:方案一:购买A种足球25个,B种足球25个;方案二:购买A种足球26个,B种足球24个;方案三:购买A种足球27个,B种足球23个.【点睛】此题考查二元一次方程组的应用,一元一次不等式组的应用,解题关键在于根据题意列出方程.22、(1)见解析;(2)OF=29.【解析】

(1)根据菱形的性质得到AD∥BC且AD=BC,等量代换得到BC=EF,推出四边形AEFD是平行四边形,根据矩形的判定定理即可得到结论;(2)根据直角三角形斜边中线可得:OF=12AC,利用勾股定理计算AC【详解】(1)证明:∵四边形ABCD是平行四边形∴AB=CD,AB∥CD.∵DF=CE,∴DF+DE=CE+ED,即:FE=CD.∵点F、E在直线CD上∴AB=FE,AB∥FE.∴四边形ABEF是平行四边形又∵BE⊥CD,垂足是E,∴∠BEF=90°.∴四边形ABEF是矩形.(2)解:∵四边形ABEF是矩形O,∴∠AFC=90°,AB=FE.∵AB=6,DE=2,∴FD=4.∵FD=CE,∴CE=4.∴FC=10.在Rt△AFD中,∠AFD=90°.∵∠ADF=45°,∴AF=FD=4.在Rt△AFC中,∠AFC=90°.∴AC=A∵点O是平行四边形ABCD对角线的交点,∴O为AC中点在Rt△AFC中,∠AFC=90°.O为AC中点.∴OF=12AC=29【点睛】本题考查了矩形的判定和性质,平行四边形的性质,勾股定理,正确的识别图形是解题的关键.23、(1)见解析;(2)见解析【解析】

(1)根据平行四边形的性质即可得到结论;(2)根据平行四边形的面积公式计算即可得到结论.【详解】解:(1)如图所示,平行四边形ACEG和平行四边形BFGD即为所求;(2)菱形DBFG面积===12或平行四边形面积==15【点睛】本题考查了作图——应用与设计作图,解此类题目首先要理解题意,弄清问题中对所作图形的要求,结合对应几何图形的性质和基本作图的方法作图.24、(1)平均数为26件,中位数为24件,众数为24件;(2)合理.【解析】

(1)先根据加权平均数公式即可求得平均数,再将表中的数据按照从大到小的顺序排列,根据中位数和众数的概念求解即可;(2)应根据(1)中求出的中位数和众数综合考虑.【详解】解:(1)平均数==26(件),将表中的数据按照从大到小的顺序排列,可得出第8名工人的加工零件数为24件,且零件加工数为24的工人最多,故中位数为:24件,众数为:24件.答:这15人该月加工零件数的平均数为26件,中位数为24件,众数为24件.(2)24件较为合理,24既是众数,也是中位数,且24小于人均零件加工数,是大多数人能达到的定额.【点睛】本题主要考查了加权平均数、众数和中位数的概念

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论