2024届安徽合肥市数学八年级下册期末考试模拟试题含解析_第1页
2024届安徽合肥市数学八年级下册期末考试模拟试题含解析_第2页
2024届安徽合肥市数学八年级下册期末考试模拟试题含解析_第3页
2024届安徽合肥市数学八年级下册期末考试模拟试题含解析_第4页
2024届安徽合肥市数学八年级下册期末考试模拟试题含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届安徽合肥市数学八年级下册期末考试模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每题4分,共48分)1.如图,平行四边形ABCD的对角线AC、BD相交于点O,已知AD=5,BD=8,AC=6,则△OBC的面积为()A.5 B.6 C.8 D.122.一组数据:201、200、199、202、200,分别减去200,得到另一组数据:1、0、﹣1、2、0,其中判断错误的是()A.前一组数据的中位数是200B.前一组数据的众数是200C.后一组数据的平均数等于前一组数据的平均数减去200D.后一组数据的方差等于前一组数据的方差减去2003.如图,函数与,在同一坐标系中的大致图像是()A. B.C. D.4.若分式的值为0,则x的值等于A.0 B.3 C. D.5.一次数学测验中,某学习小组六名同学的成绩(单位:分)分别是110,90,105,91,85,1.则该小组的平均成绩是()A.94分 B.1分 C.96分 D.98分6.下列各式由左到右的变形中,属于因式分解的是()A. B.C. D.7.一个多边形的边数增加2条,则它的内角和增加()A.180° B.90° C.360° D.540°8.在以x为自变量,y为函数的关系式y=5πx中,常量为()A.5 B.π C.5π D.πx9.式子的值()A.在2到3之间 B.在3到4之间 C.在4到5之间 D.等于3410.如图,过正方形的顶点作直线,点、到直线的距离分别为和,则的长为()A. B. C. D.11.二次根式在实数范围内有意义,则x应满足的条件是(

)A.x≥1 B.x>1 C.x>﹣1 D.x≥﹣112.小明家、食堂、图书馆在同一条直线上,小明从家去食堂吃早餐,接着去图书馆读报,然后回家,如图反映了这个过程中,小明离家的距离y与时间x之间的对应关系.根据图象,下列说法正确的是()A.小明吃早餐用了25minB.小明从图书馆回家的速度为0.8km/minC.食堂到图书馆的距离为0.8kmD.小明读报用了30min二、填空题(每题4分,共24分)13.如图,在平面直角坐标系中,点在直线上,点关于轴的对称点恰好落在直线上,则的值为_____.14.某种感冒病毒的直径是0.00000012米,用科学记数法表示为米.15.若分式方程有增根x=2,则a=___.16.某日,王艳骑自行车到位于家正东方向的演奏厅听音乐会.王艳离家5分钟后自行车出现故障而且发现没有带钱包,王艳立即打电话通知在家看报纸的爸爸骑自行车赶来送钱包(王艳打电话和爸爸准备出门的时间忽略不计),同时王艳以原来一半的速度推着自行车继续走向演奏厅.爸爸接到电话后,立刻出发追赶王艳,追上王艳的同时,王艳坐上出租车并以爸爸速度的2倍赶往演奏厅(王艳打车和爸爸将钱包给王艳的时间忽略不计),同时爸爸立刻掉头以原速赶到位于家正西方3900米的公司上班,最后王艳比爸爸早到达目地的.在整个过程中,王艳和爸爸保持匀速行驶.如图是王艳与爸爸之间的距离y(米)与王艳出发时间x(分钟)之间的函数图象,则王艳到达演奏厅时,爸爸距离公司_____米.17.若点P(-2,2)是正比例函数y=kx(k≠0)图象上的点,则此正比例函数的解析式为______.18.若方程x2﹣3x﹣1=0的两根为x1、x2,则的值为_____.三、解答题(共78分)19.(8分)如图,∠A=∠D=90°,AC=DB,AC、DB相交于点O.求证:OB=OC.20.(8分)如图,以△ABC的各边,在边BC的同侧分别作三个正方形ABDI,BCFE,ACHG.(1)求证:△BDE≌△BAC;(2)求证:四边形ADEG是平行四边形.(3)直接回答下面两个问题,不必证明:①当△ABC满足条件_____________________时,四边形ADEG是矩形.②当△ABC满足条件_____________________时,四边形ADEG是正方形?21.(8分)已知关于x、y的方程组的解满足不等式组.求满足条件的m的整数值.22.(10分)如图,在正方形ABCD中,E是AB上一点,F是AD延长线上一点,且CE=CF.(1)求证:BE=DF;(2)若点G在AD上,且∠GCE=45°,则GE=BE+GD成立吗?为什么?23.(10分)在平面直角坐标系中,已知直线与轴交于点,与轴交于点,点为的中点,点是线段上的动点,四边形是平行四边形,连接.设点横坐标为.(1)填空:①当________时,是矩形;②当________时,是菱形;(2)当的面积为时,求点的坐标.24.(10分)如图,在菱形ABCD中,∠ABC=120°,AB=4,E为对角线AC上的动点(点E不与A,C重合),连接BE,将射线EB绕点E逆时针旋转120°后交射线AD于点F.(1)如图1,当AE=AF时,求∠AEB的度数;(2)如图2,分别过点B,F作EF,BE的平行线,且两直线相交于点G.①试探究四边形BGFE的形状,并求出四边形BGFE的周长的最小值;②连接AG,设CE=x,AG=y,请直接写出y与x之间满足的关系式,不必写出求解过程.25.(12分)如图,四边形ABCD中,AB=AD=2,BC=3,CD=1,∠A=90°,请问△BCD是直角三角形吗?请说明你的理由.26.(江苏省泰州市海陵区2018年中考适应性训练数学试题)如图,直线AB:y=−x−b分别与x、y轴交于A(6,0)、B两点,过点B的直线交x轴的负半轴于点C,且OB∶OC=3∶1.(1)求点B的坐标;(2)求直线BC的函数关系式;(3)若点P(m,2)在△ABC的内部,求m的取值范围.

参考答案一、选择题(每题4分,共48分)1、B【解析】

由平行四边形的性质得出BC=AD=5,OA=OC=AC=3,OB=OD=BD=4,再由勾股定理逆定理证得△OBC是直角三角形,继而由直角三角形面积公式即可求出ΔOBC的面积.【详解】解:∵四边形ABCD是平行四边形,AD=5,BD=8,AC=6,∴BC=AD=5,OA=OC=AC=3,OB=OD=BD=4,∵∴△OBC是直角三角形,∴.故选:B.【点睛】本题主要考查了平行四边形的性质和勾股定理逆定理,平行四边形基本性质:①平行四边形两组对边分别平行;②平行四边形的两组对边分别相等;③平行四边形的两组对角分别相等;④平行四边形的对角线互相平分,解题的关键是证明△OBC是直角三角形.2、D【解析】

由中位数、众数、平均数及方差的意义逐一判断可得.【详解】解:A.前一组数据的中位数是200,正确,此选项不符合题意;B.前一组数据的众数是200,正确,此选项不符合题意;C.后一组数据的平均数等于前一组数据的平均数减去200,正确,此选项不符合题意;D.后一组数据的方差等于前一组数据的方差,此选项符合题意;故选D.【点睛】本题考查方差、中位数、众数、平均数,解题的关键是掌握中位数、众数、平均数及方差的意义.3、B【解析】

分成a>0和a<0两种情况进行讨论,根据一次函数与反比例函数的图象的性质即可作出判断.【详解】解:当a>0时,一次函数单增,过一三四象限,没有选项满足.当a<0时,一次函数单减,过二三四象限,反比例函数过二四象限,B满足.故答案选B.【点睛】本题主要考查了反比例函数的图象性质和一次函数的图象性质,要掌握它们的性质才能灵活解题.4、C【解析】

直接利用分式的值为0的条件以及分式有意义的条件进而得出答案.【详解】分式的值为0,,,解得:,故选C.【点睛】本题考查了分式的值为零的条件,熟知“分子为0且分母不为0时,分式的值为0”是解题的关键.5、C【解析】

根据平均数的定义:平均数是指在一组数据中所有数据之和再除以数据的个数,即可得解.【详解】根据题意,该小组的平均成绩是故答案为C.【点睛】此题主要考查平均数的应用,熟练掌握,即可解题.6、C【解析】

根据因式分解的定义,直接判断是否是因式分解即可.【详解】解:A.,属于整式乘法,单项式乘多项式,故此选项不符合题意;B.,等式左右两边都有整式加减的形式,故此选项不符合题意;C.,用提公因式法将多项式转化成整式乘法的形式,属于因式分解,故此选项正确;D.,等式左右两边都有整式加减的形式,故此选项不符合题意;故选:C【点睛】本题主要考查整式的因式分解的意义,熟记因式分解的意义是解决此题的关键,还要注意,必须是整式.7、C【解析】

根据n边形的内角和定理即可求解.【详解】解:原来的多边形的边数是n,则新的多边形的边数是n+1.(n+1﹣1)•180﹣(n﹣1)•180=360°.故选:C.【点睛】本题主要考查了多边形的内角和定理,多边形的边数每增加一条,内角和就增加180度.8、C【解析】

根据常量的定义解答即可,常量是指在某一个变化过程中,固定不变的量.【详解】在以x为自变量,y为函数的关系式y=5πx中,常量为5π,故选:C.【点睛】考查了变量关系中的常量的定义,熟记常量定义是解题的关键,注意π是常量.9、C【解析】分析:根据数的平方估出介于哪两个整数之间,从而找到其对应的点.详解:∵,∴4<<5,故选C.点睛:本题考查了无理数的估算以及数轴上的点和数之间的对应关系,解题的关键是求出介于哪两个整数之间.10、A【解析】

先证明△ABE≌△BCF,得到BE=CF=1,在Rt△ABE中利用勾股定理可得AB=2,由此可得AC长.【详解】解:∵四边形ABCD是正方形,

∴AB=AC,∠ABC=90°.

∵∠ABE+∠EAB=90°,∠ABE+∠CBF=90°,

∴∠EAB=∠CBF.

又∠AEB=∠CFB=90°,

∴△ABE≌BCF(AAS).

∴BE=CF=1.

在Rt△ABE中,利用勾股定理可得AB===2.

则AC=AB=2.

故选A.【点睛】本题主要考查了正方形的性质、全等三角形的判定和性质,以及勾股定理,解题的关键是通过全等转化线段使其划归于一直角三角形中,再利用勾股定理进行求解.11、A【解析】

二次根式在实数范围内有意义的条件是被开方数大于等于0,据此列不等式求出x的范围即可.【详解】由题意得:x-1≥0,则x≥1

,故答案为:A.【点睛】本题考查二次根式有意义的条件,属于简单题,基础知识扎实是解题关键.12、D【解析】

根据函数图象判断即可.【详解】小明吃早餐用了(25-8)=17min,A错误;小明从图书馆回家的速度为0.8÷10=0.08km/min,B错误;

食堂到图书馆的距离为(0.8-0.6)=0.2km,C错误;

小明读报用了(58-28)=30min,D正确;

故选:D【点睛】本题考查的是函数图象的读图能力.要能根据函数图象的性质和图象上的数据分析得出函数的类型和所需要的条件,结合题意正确计算是解题的关键.二、填空题(每题4分,共24分)13、1【解析】

由点A的坐标以及点A在直线y=-2x+3上,可得出关于m的一元一次方程,解方程可求出m值,即得出点A的坐标,再根据对称的性质找出点B的坐标,由点B的坐标利用待定系数法即可求出k值.【详解】解:点A在直线上,

点A的坐标为.

又点A、B关于y轴对称,

点B的坐标为,

点在直线上,

,解得:.

故答案为:1.【点睛】本题考查了一次函数图象上点的坐标特征以及关于x、y轴对称的点的坐标,解题的关键是求出点B的坐标.解决该题型时,找出点的坐标,利用待定系数法求出函数系数是关键.14、【解析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.0.00000012=.15、﹣2.【解析】

先化简分式方程,再根据分式方程有增根的条件代入方程,最后求出方程的解即可.【详解】去分母得:x+2+ax=3x﹣6,把x=2代入得:4+2a=0,解得:a=﹣2,故答案为:﹣2.【点睛】此题考查分式方程的解,解题关键在于掌握运算法则16、1.【解析】

根据函数图象可知,王艳出发10分钟后,爸爸追上了王艳,根据此时爸爸的5分钟的行程等于王艳前5分钟的行程与后5分钟的行程和,得到爸爸的速度与王艳骑自行车的速度的关系,再根据函数图象可知,爸爸到赶到公司时,公司距离演奏厅的距离为9400米,再根据已知条件,便可求得家与演奏厅的距离,由函数图象又可知,王艳到达演奏厅的时间为秒,据此列出方程,求得王艳的速度与爸爸的速度,进而便可求得结果.【详解】解:设王艳骑自行车的速度为xm/min,则爸爸的速度为:(5x+x)÷5=x(m/min),由函数图象可知,公司距离演奏厅的距离为9400米,∵公司位于家正西方3900米,∴家与演奏厅的距离为:9400﹣3900=5500(米),根据题意得,5x+5×x+()×=5500,解得,x=200(m/min),∴爸爸的速度为:(m/min)∴王艳到达演奏厅时,爸爸距离公司的距离为:5×300+3900﹣()×300=1(m).故答案为:1.【点睛】本题考查了函数图象与行程问题,解题的关键是将函数图象与实际的行程对应起来,列出方程,解出相关量.17、y=-x【解析】

直接把点(-2,2)代入正比例函数y=kx(k≠0),求出k的数值即可.【详解】把点(-2,2)代入y=kx得2=-2k,k=-1,所以正比例函数解析式为y=-x.故答案为:y=-x.【点睛】本题考查了待定系数法求正比例函数解析式:设正比例函数解析式为y=kx(k≠0),然后把正比例函数图象上一个点的坐标代入求出k即可.18、-3【解析】

解:因为的两根为x1,x2,所以=故答案为:-3三、解答题(共78分)19、证明见解析.【解析】分析:因为∠A=∠D=90°,AC=BD,BC=BC,知Rt△BAC≌Rt△CDB(HL),所以∠ACB=∠DBC,故OB=OC.【解答】证明:在Rt△ABC和Rt△DCB中,∴Rt△ABC≌Rt△DCB(HL),∴∠OBC=∠OCB,∴BO=CO.点睛:此题主要考查了全等三角形的判定,全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.20、(1)见解析;(2)见解析;(3)①∠BAC=135°;②∠BAC=135°且AC=【解析】

(1)根据全等三角形的判定定理SAS证得△BDE≌△BAC;(2)由△BDE≌△BAC,可得全等三角形的对应边DE=AG.然后利用正方形对角线的性质、周角的定义推知∠EDA+∠DAG=180°,易证ED∥GA;最后由“一组对边平行且相等”的判定定理证得结论;(3)①根据“矩形的内角都是直角”易证∠DAG=90°.然后由周角的定义求得∠BAC=135°;②由“正方形的内角都是直角,四条边都相等”易证∠DAG=90°,且AG=AD.由正方形ABDI和正方形ACHG的性质证得:ACAB.【详解】(1)∵四边形ABDI、四边形BCFE、四边形ACHG都是正方形,∴AC=AG,AB=BD,BC=BE,∠GAC=∠EBC=∠DBA=90°,∴∠ABC=∠EBD(同为∠EBA的余角).在△BDE和△BAC中,∵,∴△BDE≌△BAC(SAS);(2)∵△BDE≌△BAC,∴DE=AC=AG,∠BAC=∠BDE.∵AD是正方形ABDI的对角线,∴∠BDA=∠BAD=45°.∵∠EDA=∠BDE﹣∠BDA=∠BDE﹣45°,∠DAG=360°﹣∠GAC﹣∠BAC﹣∠BAD=360°﹣90°﹣∠BAC﹣45°=225°﹣∠BAC,∴∠EDA+∠DAG=∠BDE﹣45°+225°﹣∠BAC=180°,∴DE∥AG,∴四边形ADEG是平行四边形(一组对边平行且相等).(3)①当四边形ADEG是矩形时,∠DAG=90°.则∠BAC=360°﹣∠BAD﹣∠DAG﹣∠GAC=360°﹣45°﹣90°﹣90°=135°,即当∠BAC=135°时,平行四边形ADEG是矩形;②当四边形ADEG是正方形时,∠DAG=90°,且AG=AD.由①知,当∠DAG=90°时,∠BAC=135°.∵四边形ABDI是正方形,∴ADAB.又∵四边形ACHG是正方形,∴AC=AG,∴ACAB,∴当∠BAC=135°且ACAB时,四边形ADEG是正方形.【点睛】本题综合考查了正方形的判定与性质,全等三角形的判定与性质,平行四边形的判定与性质等知识点.解题时,注意利用隐含在题干中的已知条件:周角是360°.21、-3,-1.【解析】

首先根据方程组可得y=,把y=代入①得:x=m+,然后再把x=m+,y=代入不等式组中得,再解不等式组,确定出整数解即可.【详解】①×1得:1x-4y=1m③,②-③得:y=,把y=代入①得:x=m+,把x=m+,y=代入不等式组中得:,解不等式组得:-4≤m≤-,则m=-3,-1.考点:1.一元一次不等式组的整数解;1.二元一次方程组的解.22、(1)证明见解析;(2)成立,理由见解析.【解析】

(1)由CE=CF,四边形ABCD为正方形可证△CEB≌△CFD,从而证出BE=DF;(2)由△CEB≌△CFD得,∠BCE=∠DCF,又∠GCE=45°,可得∠GCE=∠GCF,故可证得△ECG≌△FCG,即EG=FG=GD+DF.又因为DF=BE,可证出GE=BE+GD成立.【详解】(1)证明:∵四边形ABCD是正方形,∴BC=CD,∠B=∠CDA=90°,∵F是AD延长线上一点,∴∠CDF=180˚-∠CDA=90°.在Rt△CBE和Rt△CDF中,,∴Rt△CBE≌Rt△CDF(HL),∴BE=DF.(2)成立,理由如下:∵△CBE≌△CDF,∴∠BCE=∠DCF.又∵∠BCD=∠BCE+∠DCE=90°,∴∠ECF=∠DCF+∠DCE=90°.∵∠GCE=45°,∴∠GCF=∠ECF-∠GCE=45°.在△ECG和△FCG中,,∴△ECG≌△FCG(SAS),∴GE=GF=DF+DG.又∵BE=DF,∴GE=BE+DG.【点睛】本题主要考查了正方形的性质,以及全等三角形的判定和性质,掌握全等三角形的判定方法(即SSS、SAS、ASA、AAS和HL)和全等三角形的性质(即全等三角形的对应边相等、对应角相等)是解题的关键.23、(1)4,;(2)(1,)【解析】

(1)根据题意可得OB=6,OA=8,假设是矩形,那么CD⊥BO,结合三角形中位线性质可得CD=,从而即可得出m的值;同样假设是菱形,利用勾股定理求出m即可;(2)利用△EOA面积为9求出点E到OA的距离,从而进一步得出D的纵坐标,最后代入解析式求出横坐标即可.【详解】(1)∵直线与轴交于点,与轴交于点,点为的中点∴OB=6,OA=8,当是矩形时,CD⊥OB,∵C是BO中点,∴此时CD=,∴此时m的值为4;当是菱形时,CD=CO=3,如图,过D作OB垂线,交OB于F,则DF=m,CF=,在Rt△DFC中,,即:,解得:(舍去)或;∴此时m的值为;(2)如图,过E作OA垂线,交OA于N,∵△EOA面积为9,∴,∴,∴DN==,∵D在直线上,∴,解得,∴D点坐标为(1,)【点睛】本题主要考查了一次函数与几何的综合运用,熟练掌握相关概念是解题关键.24、(1)45°;(2)①四边形BEFG是菱形,8;②y=(0<x<12)【解析】

(1)利用等腰三角形的性质求出∠AEF即可解决问题.(2)①证明四边形BEFG是菱形,根据垂线段最短,求出BE的最小值即可解决问题.②如图2﹣1中,连接BD,DE,过点E作EH⊥CD于H.证明△ABG≌△DBE(SAS),推出AG=DE=y,在Rt△CEH中,EH=EC=x.CH=x,推出DH=|4﹣x|,在Rt△DEH中,根据DE2=EH2+DH2,构建方程求解即可.【详解】解:(1)如图1中,∵四边形ABCD是菱形,∴BC∥AD,∠BAC=∠DAC,∴∠ABC+∠BAD=180°,∵∠ABC=120°,∴∠BAD=60°,∴∠EAF=30°,∵AE=AF,∴∠AEF=∠AFE=75°,∵∠BEF=120°,∴∠AEB=120°﹣75°=45°.(2)①如图2中,连接DE.∵AB=AD,∠BAE=∠DAE,AE=AE,∴△BAE≌△DAE(SAS),∴BE=DE,∠ABE=∠ADE,∵∠BAF+∠BEF=60°+120°=180°,∴∠ABE+∠AFE=180°,∵∠AFE+∠EFD=180°,∴∠EFD=∠ABE,∴∠EFD=∠ADE,∴EF=ED,∴EF=BE,∵BE∥FG,BG∥EF,∴四边形BEFG是平行四边形,∵EB=EF,∴四边形BEFG是菱形,∴当BE⊥AC时,菱形BEFG的周长最小,此时BE=AB•sin30°=2,∴四边形BGFE的周长的最小值为8.②如图2﹣1中,连接BD,DE,过点E作EH⊥CD于H.∵AB=AD,∠BAD=

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论