2024届江苏省大丰区第二中学八年级下册数学期末质量检测模拟试题含解析_第1页
2024届江苏省大丰区第二中学八年级下册数学期末质量检测模拟试题含解析_第2页
2024届江苏省大丰区第二中学八年级下册数学期末质量检测模拟试题含解析_第3页
2024届江苏省大丰区第二中学八年级下册数学期末质量检测模拟试题含解析_第4页
2024届江苏省大丰区第二中学八年级下册数学期末质量检测模拟试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届江苏省大丰区第二中学八年级下册数学期末质量检测模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每题4分,共48分)1.已知点都在反比例函数图象上,则的大小关系()A.. B.C. D.2.若点都是反比例函数的图象上的点,并且,则下列各式中正确的是(()A. B. C. D.3.已知一个直角三角形的两边长分别为3和4,则第三边长是()A.5 B.25 C. D.5或4.定义新运算:a⊙b=a-1(a⩽b)-ab(a>b且b≠0)A. B.C. D.5.如图,一次函数和反比例函数的图象交于,,两点,若,则的取值范围是()A. B.或C. D.或6.要使分式有意义,x的值不能等于()A.-1 B.0 C.1 D.±17.如图,已知P为正方形ABCD外的一点,PA=1,PB=2,将△ABP绕点B顺时针旋转90°,使点P旋转至点P′,且AP′=3,则∠BP′C的度数为()A.105° B.112.5° C.120° D.135°8.如图,在△ABC中,AB=AC=15,AD平分∠BAC,点E为AC的中点,连接DE,若△CDE的周长为21,则BC的长为().A.6 B.9 C.10 D.129.下列计算正确的是()A.a3•a2=a6 B.(a3)4=a7 C.3a2﹣2a2=a2 D.3a2×2a2=6a210.用反证法证明“a>b”时应先假设()A.a≤b B.a<b C.a=b D.a≠b11.如图,∠C=90°,AB=12,BC=3,CD=1.若∠ABD=90°,则AD的长为()A.10 B.13 C.8 D.1112.若(x﹣2)x=1,则x的值是()A.0 B.1 C.3 D.0或3二、填空题(每题4分,共24分)13.如图,在Rt△ABC中,∠ACB=90°,D、E、F分别是AB、BC、CA的中点,若CD=5cm,则EF=_______cm.14.今年我市有5万名考生参加中考,为了解这些考生的数学成绩,从中抽取1000名考生的数学成绩进行统计分析,在这个调查中样本容量是______.15.若O是四边形ABCD的对角线AC和BD的交点,且OB=OD,AC=14cm,则当OA=_____cm时,四边形ABCD是平行四边形.16.一辆汽车的行驶距离s(单位:m)与行驶时间t(单位:s)的函数关系式是s=9t+,则汽车行驶380m需要时间是______s.17.工人师傅给一幅长为,宽为的矩形书法作品装裱,作品的四周需要留白如图所示,已知左、右留白部分的宽度一样,上、下留白部分的宽度也一样,而且左侧留白部分的宽度是上面留白部分的宽度的2倍,使得装裱后整个挂图的面积为.设上面留白部分的宽度为,可列得方程为________。18.直线y=2x-1沿y轴平移3个单位长度,平移后直线与x轴的交点坐标为.三、解答题(共78分)19.(8分)如图,在▱ABCD中,AC为对角线,BF⊥AC,DE⊥AC,F、E为垂足,求证:BF=DE.20.(8分)如图,点A,B,C,D在同一条直线上,点E,F分别在直线AD的两侧,且AE=DF,∠A=∠D,AB=DC.(1)求证:四边形BFCE是平行四边形;(2)若AD=10,DC=3,∠EBD=60°,则BE=时,四边形BFCE是菱形.21.(8分)解方程:(1)(2)22.(10分)如图,四边形和四边形都是平行四边形.求证:四边形是平行四边形.23.(10分)图l、图2是两张形状、大小完全相同的方格纸,方格纸中的每个小正方形的边长均为1.点A和点B在小正方形的顶点上.(1)在图1中画出△ABC(点C在小正方形的顶点上),使△ABC为直角三角形(画一个即可);(2)在图2中画出△ABD(点D在小正方形的顶点上),使△ABD为等腰三角形(画一个即可);24.(10分)南江县在“创国家级卫生城市”中,朝阳社区计划对某区域进行绿化,经投标,由甲、乙两个工程队来完成,已知甲队每天能完成绿化的面积是乙队每天能完成绿化面积的2倍,并且在独立完成面积为400m2区域的绿化时,甲队比乙队少用4天.求甲、乙两工程队每天能完成绿化的面积是多少?25.(12分)如图,在平行四边形中,,点为的中点,连接并延长与的延长线相交于点,连接.(1)求证:;(2)求证:是的平分线.26.嘉兴某校组织了“垃圾分类”知识竞赛活动,获奖同学在竞赛中的成绩绘成如下图表,根据图表提供的信息解答下列问题:垃圾分类知识竞赛活动成绩统计表分数段频数频数频率80≤x<85x0.285≤x<9080y90≤x<95600.395≤x<100200.1(1)求本次获奖同学的人数;(2)求表中x,y的数值:并补全频数分布直方图.

参考答案一、选择题(每题4分,共48分)1、B【解析】

根据反比例函数图象的性质:当k>0时,图象分别位于第一、三象限,每一个象限内,从左往右,y随x的增大而减小判断求解即可.【详解】解:∵中,,∴图象分别位于第一、三象限,每一个象限内,从左往右,y随x的增大而减小,∵点A、B位于第一象限,且,∴,∵点C位于第三象限,∴∴的大小关系是:故选:B.【点睛】本题考查的知识点是反比例函数的性质,掌握反比例函数的图象和性质是解此题的关键.2、B【解析】

解:根据题意可得:∴反比例函数处于二、四象限,则在每个象限内为增函数,且当x<0时y>0,当x>0时,y<0,∴<<.3、D【解析】

分为两种情况:①斜边是4有一条直角边是3,②3和4都是直角边,根据勾股定理求出即可.【详解】解:分为两种情况:①斜边是4有一条直角边是3,由勾股定理得:第三边长是;②3和4都是直角边,由勾股定理得:第三边长是=5;即第三边长是5或,故选D.【点睛】本题考查了对勾股定理的应用,注意:在直角三角形中的两条直角边a、b的平方和等于斜边c的平方.4、C【解析】

根据题意可得y=3⊕x=2(x≥3)【详解】由题意得y=3⊕x=2(当x≥3时,y=2;当x<3且x≠0时,y=﹣3x图象如图:故选:C.【点睛】此题主要考查了反比例函数的图象性质和一次函数的图象性质,要掌握它们的性质才能灵活解题.5、D【解析】

在图象上找出一次函数在反比例函数下方时x的范围,即为所求x的范围.【详解】解:由一次函数y1=ax+b和反比例函数的图象交于A(-2,m),B(1,n)两点,根据图象可得:当y1<y2时,x的范围为-2<x<0或x>1.

故选:D.【点睛】本题考查反比例函数与一次函数的交点问题,利用了数形结合的数学思想,数形结合思想是数学中重要的思想方法,学生做题时注意灵活运用.6、C【解析】

根据分式有意义的条件:分母不等于0;【详解】解:要使分式有意义,则,故故选:C【点睛】考查分式有意义的条件,熟练掌握分式有意义的条件:分母不等于0;是解题的关键.7、D【解析】

连结PP′,如图,先根据旋转的性质得BP=BP′,∠BAP=∠BP′C,∠PBP′=90°,则可判断△PBP′为等腰直角三角形,于是有∠BPP′=45°,PP′=PB=2,然后根据勾股定理的逆定理证明△APP′为直角三角形,得到∠APP′=90°,所以∠BPA=∠BPP′+∠APP′=135°,则∠BP′C=135°.【详解】解:连结PP′,如图,∵四边形ABCD为正方形,∴∠ABC=90°,BA=BC,∴△ABP绕点B顺时针旋转90°得到△CBP′,∴BP=BP′,∠BAP=∠BP′C,∠PBP′=90°,∴△PBP′为等腰直角三角形,∴∠BPP′=45°,PP′=PB=2,在△APP′中,∵PA=1,PP′=2,AP′=3,∴PA2+PP′2=AP′2,∴△APP′为直角三角形,∠APP′=90°,∴∠BPA=∠BPP′+∠APP′=45°+90°=135°,∴∠BP′C=135°.故选D.【点睛】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了等腰直角三角形的判定与性质和勾股定理的逆定理.8、D【解析】

根据等腰三角形的性质可得AD⊥BC,再根据在直角三角形中,斜边上的中线等于斜边的一半可得答案.【详解】∵AB=AC,AD平分∠BAC,∴AD⊥BC,∴∠ADC=90°,∵点E为AC的中点,∴DE=CE=AC=.∵△CDE的周长为21,∴CD=6,∴BC=2CD=1.故选D.【点睛】此题主要考查了等腰三角形的性质,以及直角三角形的性质,关键是掌握在直角三角形中,斜边上的中线等于斜边的一半.9、C【解析】

根据同底数幂乘法、幂的乘方、整式加减法和乘法运算法则进行分析.【详解】A.a3•a2=a5,本选项错误;B.(a3)4=a12,本选项错误;C.3a2﹣2a2=a2,本选项正确;D.3a2×2a2=6a4,本选项错误.故选C【点睛】本题考核知识点:整式运算.解题关键点:掌握整式运算法则.10、A【解析】

熟记反证法的步骤,直接得出答案即可,要注意的是a>b的反面有多种情况,需一一否定.【详解】用反证法证明“a>b”时,应先假设a≤b.故选:A.【点睛】本题考查了反证法,解此题关键要懂得反证法的意义及步骤.11、B【解析】试题分析:在Rt△BCD中,因为BC=3,CD=1,∠C=90°,所以由勾股定理可得:BD=.在Rt△ABD中,BA=12,BD=5,∠ABD=90°,由勾股定理可得:AD=.故选B考点:勾股定理.12、D【解析】

根据零指数幂的性质解答即可.【详解】解:∵(x﹣2)x=1,∴x﹣2=1或x=0,解答x=3或x=0,故选D.【点睛】本题考查了零指数幂的性质,熟记零指数幂的性质是解题的关键.二、填空题(每题4分,共24分)13、1【解析】

∵△ABC是直角三角形,CD是斜边的中线,∴CD=AB,∴AB=2CD=2×1=10cm,又∵EF是△ABC的中位线,∴EF=×10=1cm.故答案为1.考点:三角形中位线定理;直角三角形斜边上的中线.14、1【解析】

根据样本容量的定义:样本中个体的数目称为样本容量,即可求解.【详解】解:这个调查的样本是1名考生的数学成绩,故样本容量是1.故答案为1.【点睛】本题考查样本容量,难度不大,熟练掌握样本容量的定义是顺利解题的关键.15、1【解析】

根据OB=OD,当OA=OC时,四边形ABCD是平行四边形,即可得出答案.【详解】由题意得:当OA=1时,OC=14﹣1=1=OA,∵OB=OD,∴四边形ABCD是平行四边形,故答案为:1.【点睛】本题考查平行四边形的判定,解题关键是熟练掌握平行四边形的判定定理:对角线互相平分的四边形是平行四边形,难度一般.16、20【解析】

令S=380m,即可求出t的值.【详解】解:当s=380m时,9t+t2=380,整理得t2+18t﹣760=0,即(t﹣20)(t+38)=0,解得t1=20,t2=﹣38(舍去).∴行驶380米需要20秒,故答案为:20【点睛】本题主要考查根据函数值求自变量的值,能够利用方程的思想是解题的关键.17、(120+4x)(40+2x)=1【解析】

设上面留白部分的宽度为xcm,则左右空白部分为2x,根据题意得出方程,计算即可求出答案.【详解】设上面留白部分的宽度为xcm,则左右空白部分为2x,可列得方程为:(120+4x)(40+2x)=1.故答案为:(120+4x)(40+2x)=1.【点睛】此题考查由实际问题抽象出一元二次方程,正确表示出变化后的长与宽是解题关键.18、(-1,0),(2,0)【解析】(1)若将直线沿轴向上平移3个单位,则平移后所得直线的解析式为:,在中,由可得:,解得:,∴平移后的直线与轴的交点坐标为:;(2)若将直线沿轴向下平移3个单位,则平移后所得直线的解析式为:,在中,由可得:,解得:,∴平移后的直线与轴的交点坐标为:;综上所述,平移后的直线与轴的交点坐标为:或.三、解答题(共78分)19、证明见解析【解析】

由平行四边形的性质可知AD=BC,∠DAE=∠BCF,由垂直的定义可知∠DEA=∠BFC=90°,由全等三角形的判定方法可知△AED≌△CFB,进而得到BF=DE.【详解】∵四边形ABCD是平行四边形,∴AD=BC,∠DAE=∠BCF,∵DE⊥AC于E,BF⊥AC于F,∴∠DEA=∠BFC=90°.在△AED和△BFC中,,∴△AED≌△CFB,∴BF=DE.【点睛】本题考查了平行四边形的性质,以及全等三角形的性质与判定,是中考常见的题目.20、(1)证明见试题解析;(2)1.【解析】

试题分析:(1)由AE=DF,∠A=∠D,AB=DC,易证得△AEC≌△DFB,即可得BF=EC,∠ACE=∠DBF,且EC∥BF,即可判定四边形BFCE是平行四边形;(2)当四边形BFCE是菱形时,BE=CE,根据菱形的性质即可得到结果.试题解析:(1)∵AB=DC,∴AC=DB,在△AEC和△DFB中,∴△AEC≌△DFB(SAS),∴BF=EC,∠ACE=∠DBF,∴EC∥BF,∴四边形BFCE是平行四边形;(2)当四边形BFCE是菱形时,BE=CE,∵AD=10,DC=3,AB=CD=3,∴BC=10﹣3﹣3=1,∵∠EBD=60°,∴BE=BC=1,∴当BE=1时,四边形BFCE是菱形,故答案为1.【考点】平行四边形的判定;菱形的判定.21、(1),;(2),.【解析】

(1)先移项,然后根据两边同时开方进行计算;(2)用十字相乘直接计算即可;【详解】解:(1),,即或,,;(2),或,,.【点睛】本题主要考查一元二次方程的求解,熟练掌握十字相乘和直接开方法是解决本题的关键.22、详见解析【解析】

首先根据平行四边形的性质,得出,,,,进而得出,,即可判定.【详解】∵四边形是平行四边形,∴,∵四边形是平行四边形,∴,∴,∴四边形是平行四边形【点睛】此题主要考查平行四边形的性质和判定,熟练掌握,即可解题.23、解:(1)如图1、2,画一个即可:(2)如图3、4,画一个即可:【解析】(1)利用网格结构,过点A的竖直线与过点B的水平线相交于点C,连接即可,或过点A的水平线与过点B的竖直线相交于点C,连接即可.(2)根据网格结构,作出BD=AB或AB=AD,连接即可.24、甲、乙两工程队每天能完成绿化的面积分别是100m1、50m1.【解析】

设乙工程队每天能完成绿化的面积是

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论