2024届天津市滨海新区名校八年级数学第二学期期末联考试题含解析_第1页
2024届天津市滨海新区名校八年级数学第二学期期末联考试题含解析_第2页
2024届天津市滨海新区名校八年级数学第二学期期末联考试题含解析_第3页
2024届天津市滨海新区名校八年级数学第二学期期末联考试题含解析_第4页
2024届天津市滨海新区名校八年级数学第二学期期末联考试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届天津市滨海新区名校八年级数学第二学期期末联考试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.将多项式加上一个单项式后,使它能够在我们所学范围内因式分解,则此单项式不能是()A. B. C. D.2.正方形具有而菱形不具有的性质是()A.四边相等 B.对角线相等C.两组对边分别平行 D.一条对角线平分一组对角3.下列平面图形中,是中心对称图形的是()A. B. C. D.4.已知,在平面直角坐标系xOy中,点A(-4,0),点B在直线y=x+2上.当A、B两点间的距离最小时,点B的坐标是()A.(,) B.(,) C.(-3,-1) D.(-3,)5.如图,已知△ABC的周长为20cm,现将△ABC沿AB方向平移2cm至△A′B′C′的位置,连结CC′.则四边形AB′C′C的周长是()A.18cm B.20cm C.22cm D.24cm6.下列各式错误的是()A. B. C. D.7.下列调查最适合用查阅资料的方法收集数据的是()A.班级推选班长 B.本校学生的到时间C.2014世界杯中,谁的进球最多 D.本班同学最喜爱的明星8.已知x1,x2是方程的两个根,则的值为(

)A.1 B.-1 C.2 D.-29.下列二次根式中,与是同类二次根式的是()A. B. C. D.10.如图,在△ABC中,BC=15,B1、B2、…B9、C1、C2、…C9分别是AB、AC的10等分点,则B1C1+B2C2+…+B9C9的值是()A.45 B.55 C.67.5 D.135二、填空题(每小题3分,共24分)11.如图,已知菱形OABC的顶点O(0,0),B(2,2),则菱形的对角线交点D的坐标为(1,1),若菱形绕点O逆时针旋转,每秒旋转45°,则第60秒时,点D的坐标为________.12.如果在五张完全相同的纸片背后分别写上平行四边形、矩形、菱形、正方形、等腰梯形,打乱后随机抽取其中一张,那么抽取的图形既是轴对称图形又是中心对称图形的概率等于_____.13.如图,△A1B1A2,△A2B2A3,△A3B3A4,...,△AnBnAn+1都是等腰直角三角形,其中点A1、A2、…、An,在x轴上,点B1、B2、…Bn在直线y=x上,已知OA1=1,则OA2019的长是_____.14.在三角形中,点分别是的中点,于点,若,则________.15.如图,已知△ABC∽△ADB,若AD=2,CD=2,则AB的长为_____.16.若一组数据1,3,x,4,5,6的平均数是4,则这组数据的众数是_____.17.一次跳远中,成绩在4.05米以上的人有8人,频率为0.4,则参加比赛的运动员共有____人.18.如图,两个大小完全相同的矩形ABCD和AEFG中AB=4cm,BC=3cm,则FC=_____.三、解答题(共66分)19.(10分)在平行四边形ABCD中,点O是对角线BD中点,点E在边BC上,EO的延长线与边AD交于点F,连接BF、DE,如图1.(1)求证:四边形BEDF是平行四边形;(2)在(1)中,若DE=DC,∠CBD=45°,过点C作DE的垂线,与DE、BD、BF分别交于点G、H、R,如图2.①当CD=6,CE=4时,求BE的长.②探究BH与AF的数量关系,并给予证明.20.(6分)我们借助对同一个长方形面积的不同表示,可以解释一些多项式的因式分解.例如选取图①中的卡片张、卡片张、卡片张,就能拼成图②所示的正方形,从而可以解释.请用卡片张、卡片张、卡片张拼成一个长方形,画图并完成多项式的因式分解.21.(6分)计算:(-)(+)--|-3|22.(8分)如图,长的楼梯的倾斜角为60°,为了改善楼梯的安全性能,准备重新建造楼梯,使其倾斜角为45°,求调整后的楼梯的长.23.(8分)如图,在中,,(1)作边的垂直平分线,与、分别相交于点(用尺规作图,保留作图痕迹,不要求写作法);(2)在(1)的条件下,连结,若,求的度数.24.(8分)已知一次函数图象经过和两点(1)求此一次函数的解析式;(2)若点在函数图象上,求的值.25.(10分)如图1所示,在A,B两地之间有汽车站C站,客车由A地驶往C站,货车由B地驶往A地。两车同时出发,匀速行驶。图2是客车、货车离C站的路程y,y(千米)与行驶时间x(小时)之间的函数关系图象。(1)填空:A,B两地相距___千米;货车的速度是___千米/时。(2)求两小时后,货车离C站的路程y与行驶时间x之间的函数表达式;(3)客、货两车何时距离不大于30km?26.(10分)先化简代数式,再从-2,2,0三个数中选一个恰当的数作为a的值代入求值.

参考答案一、选择题(每小题3分,共30分)1、B【解析】

将分别与各个选项结合看看是否可以分解因式,即可得出答案.【详解】A.,此选项正确,不符合题意;B.,此选项错误,符合题意;C.,此选项正确,不符合题意;D.,此选项正确,不符合题意.故选B.【点睛】本题考查了因式分解,熟练掌握公式是解题的关键.2、B【解析】

根据正方形的性质以及菱形的性质,即可判断.【详解】正方形的边:四边都相等,两组对边分别平行;菱形的边:四边都相等,两组对边分别平行;正方形的对角线:互相垂直平分且相等,每一条对角线平分一组对角;菱形的对角线:互相垂直平分,每一条对角线平分一组对角;∴正方形具有而菱形不具有的性质是:对角线相等.故选B.【点睛】本题考查了正方形的性质、菱形的性质,熟练掌握正方形和菱形的性质是解题的关键.3、B【解析】

根据中心对称图形的概念求解.【详解】解:A、不是中心对称图形,故此选项错误;B、是中心对称图形,故此选项正确;C、不是中心对称图形,故此选项错误;D、不是中心对称图形,故此选项错误.故选B.【点睛】本题考查中心对称图形.4、C【解析】分析:根据题意画出图形,过点A做AB⊥直线y=x+2于2点B,则点B即为所求点,根据锐角三角函数的定义得出∠OCD=45°,故可判断出△ABC是等腰直角三角形,进而可得出B点坐标.详解:如图,过点A作AB⊥直线y=x+2于点B,则点B即为所求.∵C(﹣2,0),D(0,2),∴OC=OD,∴∠OCD=45°,∴△ABC是等腰直角三角形,∴B(﹣3,1).故选C.本题考查的是一次函数图象上点的坐标特点,根据题意画出图形,利用数形结合求解是解本题的关键.5、D【解析】

根据平移的性质求出平移前后的对应线段和对应点所连的线段的长度,即可求出四边形的周长.【详解】解:由题意,平移前后A、B、C的对应点分别为A′、B′、C′,所以BC=B′C′,BB′=CC′,∴四边形AB′C′C的周长=CA+AB+BB′+B′C′+C′C=△ABC的周长+2BB′=20+4=24(cm),故选D.【点睛】本题考查的是平移的性质,主要运用的知识点是:经过平移,对应点所连的线段平行且相等,对应线段平行且相等.6、A【解析】

A、根据相反向量的和等于,可以判断A;B、根据的模等于0,可以判断B;C、根据交换律可以判断C;D、根据运算律可以判断D.【详解】解:A、,故A错误;B、||=0,故B正确;C、,故C正确;D、,故D正确.故选:A.【点睛】此题考查平面向量,解题关键在于运算法则7、C【解析】

了解收集数据的方法及渠道,得出最适合用查阅资料的方法收集数据的选项.【详解】A、B、D适合用调查的方法收集数据,不符合题意;C适合用查阅资料的方法收集数据,符合题意.故选C.【点睛】本题考查了调查收集数据的过程与方法.解题关键是掌握收集数据的几种方法:查资料、做实验和做调查.8、B【解析】

直接利用根与系数的关系可求得答案.【详解】∵x1、x2是方程的两个根,

∴x1+x2=-1,

故选:B.【点睛】此题考查根与系数的关系,掌握方程两根之和等于-是解题的关键.9、C【解析】

判断是否为同类二次根式必须先化为最简二次根式,若化为最简二次根式后,被开方数相同则为同类二次根式.【详解】解:A、,与不是同类二次根式;

B、,与不是同类二次根式;

C、,与是同类二次根式;

D、,与不是同类二次根式;

故选C.【点睛】主要考查如何判断同类二次根式,需注意的是必需先化为最简二次根式再进行判断.10、C【解析】

当B1、C1是AB、AC的中点时,B1C1=BC;当B1,B2,C1,C2分别是AB,AC的三等分点时,B1C1+B2C2=BC+BC;…当B1,B2,C1,…,Cn分别是AB,AC的n等分点时,B1C1+B2C2+…+Bn﹣1Bn﹣1=BC+BC+…+BC=BC=7.1(n﹣1);当n=10时,7.1(n﹣1)=67.1;故B1C1+B2C2+…+B9C9的值是67.1.故选C.二、填空题(每小题3分,共24分)11、(-1,-1)【解析】

根据菱形的性质,可得D点坐标,根据旋转的性质,可得D点的坐标.【详解】菱形OABC的顶点O(0,0),B(2,2),得D点坐标为(1,1).每秒旋转45°,则第60秒时,得45°×60=2700°,2700°÷360=7.5周,OD旋转了7周半,菱形的对角线交点D的坐标为(-1,-1),故答案为:(-1,-1).【点睛】本题考查了旋转的性质,利用旋转的性质是解题关键.12、【解析】

先从平行四边形、矩形、菱形、正方形、等腰梯形找出既是轴对称图形又是中心对称图形的图形,然后根据概率公式求解即可.【详解】∵五张完全相同的卡片上分别画有平行四边形、矩形、菱形、正方形、等腰梯形,其中既是轴对称图形又是中心对称图形的有矩形、菱形、正方形,∴现从中任意抽取一张,卡片上所写的图形既是轴对称图形又是中心对称图形的概率为,故答案为.【点睛】本题考查平行四边形、矩形、菱形、正方形、等腰梯形的性质及概率的计算方法,熟练掌握图形的性质及概率公式是解答本题的关键.如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.13、1【解析】

根据一次函数的性质可得∠B1OA1=45°,然后求出△OA2B2是等腰直角三角形,△OA3B2是等腰直角三角形,然后根据等腰直角三角形斜边上的高等于斜边的一半求出OA3,同理求出OA4,然后根据变化规律写出即可.【详解】解:∵直线为y=x,∴∠B1OA1=45°,∵△A2B2A3,∴B2A2⊥x轴,∠B2A3A2=45°,∴△OA2B2是等腰直角三角形,△OA3B2是等腰直角三角形,∴OA3=2A2B2=2OA2=2×2=4,同理可求OA4=2OA3=2×4=23,…,所以,OA2019=1.故答案为:1.【点睛】本题考查了一次函数图象上点的坐标特征,等腰直角三角形的性质,熟记性质并确定出等腰直角三角形是解题的关键.14、80°【解析】

先由中位线定理推出,再由平行线的性质推出,然后根据直角三角形斜边上的中线等于斜边的一半得到HF=CF,最后由三角形内角和定理求出.【详解】∵点分别是的中点∴(中位线的性质)又∵∴(两直线平行,内错角相等)∵∴(两直线平行,同位角相等)又∵∴三角形是三角形∵是斜边上的中线∴∴(等边对等角)∴【点睛】本题考查了中位线定理,平行线的性质,直角三角形斜边上的中线等于斜边的一半,和三角形内角和定理.熟记性质并准确识图是解题的关键.15、2.【解析】

利用相似三角形的性质即可解决问题.【详解】∵△ABC∽△ADB,∴,∴AB2=AD•AC=2×4=8,∵AB>0,∴AB=2,故答案为:2.【点睛】此题考查相似三角形的性质定理,相似三角形的对应边成比例.16、5【解析】

根据题意可知这组数据的和是24,列方程即可求得x,然后求出众数.【详解】解:由题意可知,1+3+x+4+5+6=4×6,解得:x=5,所以这组数据的众数是5.故答案为5.【点睛】此题考查了众数与平均数的知识.众数是这组数据中出现次数最多的数.17、20【解析】

根据频率的计算公式即可得到答案.【详解】解:所以可得参加比赛的人数为20人.故答案为20.【点睛】本题主要考查频率的计算公式,这是数据统计的重点知识,必须掌握.18、5cm【解析】

利用勾股定理列式求出AC的长度,再根据两矩形是完全相同的矩形可知AC=AF,∠BAC+∠GAF=90°,然后判断出△ACF是等腰直角三角形,再利用等边三角形的性质求解即可.【详解】∵矩形ABCD中,AB=4cm,BC=3cm,∴AC===5cm,∵矩形ABCD和AEFG是两个大小完全相同的矩形,∴AC=AF,∠BAC+∠GAF=90°,∴△ACF是等腰直角三角形,∴FC=AC=5cm.故答案为5cm.【点睛】本题考查了矩形的对角线相等,每一个角都是直角的性质,勾股定理应用,判断出△ACF是等腰直角三角形是解题的关键.三、解答题(共66分)19、(1)详见解析;(2)①4﹣2;②AF=BH,详见解析【解析】

(1)由“ASA”可得△BOE≌△DOF,可得DF=BE,可得结论;(2)①由等腰三角形的性质可得EN=CN=2,由勾股定理可求DN,由等腰三角形的性质可求BN的长,即可求解;②如图,过点H作HM⊥BC于点M,由“AAS”可证△HMC≌△CND,可得HM=CN,由等腰直角三角形的性质可得BH=HM,即可得结论.【详解】(1)证明:∵平行四边形ABCD中,点O是对角线BD中点,∴AD∥BC,BO=DO,∴∠ADB=∠CBD,且∠DOF=∠BOE,BO=DO,∴△BOE≌△DOF(ASA)∴DF=BE,且DF∥BE,∴四边形BEDF是平行四边形;(2)①如图2,过点D作DN⊥EC于点N,∵DE=DC=6,DN⊥EC,∴EN=CN=2,∴DN===4,∵∠DBC=45°,DN⊥BC,∴∠DBC=∠BDN=45°,∴DN=BN=4,∴BE=BN﹣EN=4﹣2;故答案为:BE=4﹣2.②AF=BH,理由如下:如图,过点H作HM⊥BC于点M,∵DN⊥EC,CG⊥DE,∴∠CEG+∠ECG=90°,∠DEN+∠EDN=90°,∴∠EDN=∠ECG,∵DE=DC,DN⊥EC,∴∠EDN=∠CDN,EC=2CN,∴∠ECG=∠CDN,∵∠DHC=∠DBC+∠BCH=45°+∠BCH,∠CDB=∠BDN+∠CDN=45°+∠CDN,∴∠CDB=∠DHC,∴CD=CH,且∠HMC=∠DNC=90°,∠ECG=∠CDN,∴△HMC≌△CND(AAS)∴HM=CN,∵HM⊥BC,∠DBC=45°,∴∠BHM=∠DBC=45°,∴BM=HM,∴BH=HM,∵AD=BC,DF=BE,∴AF=EC=2CN,∴AF=2HM=BH.故答案为:AF=BH.【点睛】本题是四边形综合题,考查了平行四边形的性质,全等三角形的判定和性质,勾股定理,等腰直角三角形的性质,添加恰当辅助线构造全等三角形是本题的关键.20、见详解,【解析】

先画出图形,再根据图形列式分解即可.【详解】解:如图,【点睛】此题主要考查了因式分解,正确的画出图形是解决问题的关键.21、-【解析】分析:先进行二次根式的乘法法则运算,化简二次根式和去绝对值,然后化简后合并即可.详解:原式=5-2-2-(3-)=3-2-3+=-.点睛:本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.22、【解析】

在中,,∴∴,∴在中,,∴∴.23、(1)见解析;(2)96°【解析】

(1)利用基本作图(作线段的垂直平分线)作DE垂直平分AB即可;(1)利用线段的垂直平分线的性质得到EA=EB,则∠EAB=∠B=48°,然后根据三角形外角性质计算∠AEC的度数.【详解】(1)如图,DE为所作;

(2)∵DE垂直平分AB,

∴EA=EB,

∴∠EAB=∠B=48°,

∴∠AEC=∠EAB+∠B=96°.

故答案为96°.【点睛】本题考查了作图-基本作图、垂直平分线的性质、三角形的外角的性质,正确掌握线段垂直平分线的性质是解题关键.24、(1)(2)【解析】

(1)用待定系数法,设函数解析式为y=kx+b,将两点代入可求出k和b的值,进而可得出答案.

(2)将点(m,2)代入

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论